Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00398
  论文 本期目录 | 过刊浏览 |
生长速度对定向凝固Ti-46Al-2Cr-2Nb合金领先相及微观组织的影响
张元,刘国怀,李新中,陈瑞润,苏彦庆,郭景杰,傅恒志
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
EFFECTS OF GROWTH RATE ON PRIMARY PHASE AND MICROSTRUCTURES OF DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY
ZHANG Yuan, LIU Guohuai, LI Xinzhong, CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
全文: PDF(1592 KB)  
摘要: 

采用Birdgman定向凝固系统, 在恒定的温度梯度和宽的生长速度范围(v=10-120μm/s),Ti-46Al-2Cr-2Nb合金进行了定向凝固实验, 并对合金的领先相类型、一次枝晶间距(λ1)、二次枝晶间距(λ2)和片层间距(λe)进行分析.结果表明, 随着生长速度的增加, 试样的领先相由β相转变为α;通过计算领先相界面温度, 发现基于最高界面温度判据的相选择模型能对Ti-46Al-2Cr-2Nb合金领先相随生长速度v的转变趋势进行预测;λ1v的变化规律受领先相转变影响不大, 满足λ1=700.6v-0.24关系;但λ2v的变化规律受领先相转变影响较大, 当领先相为βα,分别满足λ2=44.0v-0.10和λ2=57.3v-0.23关系;λev之间满足λe=16.4v-0.76关系, 不受领先相转变的影响. 与TiAl二元合金相比,提高生长速度更有利于Ti-46Al-2Cr-2Nb合金片层细化.

关键词 TiAl合金定向凝固领先相微观组织    
Abstract

TiAl alloys with fully lamellar structure has been intensively studied for excellent fracture toughness and creep properties. Directional solidification is an effective way to control the lamellar structure. Thus it is important to investigate the effect of solidification parameters on the structure of TiAl alloys during directional solidification. In this work, microstructures of directionally solidifiedTi-46Al-2Cr-2Nb (atomic fraction, %) alloy has been investigated throughBridgman-type directional solidification experiment at constant temperaturegradient and wide range of growth rates (v=10-120 μm/s). The type of primary phase,the primary dendritic arm spacing (λ1), the secondary dendritic arm spacing (λ2) and the lamellar spacing (λe) are investigated. It is found that: the primary phase of the specimenstransformed from β phase to α phase with the increase of growth rates; the transformation trend of primary phases with growth rates can be predicted by the phase selection model based on the highest interface temperature criterion. λ1, λ2, andλe all decrease with the increasing of v. The relationship between λ1 and v is not affected by the transformation of primary phases, which follows λ1=700.6v-0.24 relationship. However the relationship between λ2 and v is associated with the type of primary phases, λ2 and v followsλ2=44.0v-0.10 relationship when β is the primary phases, while follows λ2=57.3v-0.23 relationship when the primary phase has transformed to α phase. The relationship between λe and v can be expressed by λe=16.4v-0.76.Compared with TiAl binary alloys, lamellar spacing is more effectively refined by increasing the growth rates in Ti-46Al-2Cr-2Nb alloy.

Key wordsTiAl alloy    directional solidification    primary phase    microstructure
收稿日期: 2013-07-10     
基金资助:

国家自然科学基金项目51071062, 51274077 和51271068, 国家重点基础研究发展计划项目2011CB605504及中央高校基本科研业务费专项资金项目HIT.NSRIF.2013002资助

通讯作者: 李新中     E-mail: hitlxz@126.com
作者简介: 张元, 男, 1986年生, 博士生

引用本文:

张元,刘国怀,李新中,陈瑞润,苏彦庆,郭景杰,傅恒志. 生长速度对定向凝固Ti-46Al-2Cr-2Nb合金领先相及微观组织的影响[J]. 金属学报, 10.3724/SP.J.1037.2013.00398.
ZHANG Yuan, LIU Guohuai, LI Xinzhong, CHEN Ruirun, SU Yanqing, GUO Jingjie, FU Hengzhi. EFFECTS OF GROWTH RATE ON PRIMARY PHASE AND MICROSTRUCTURES OF DIRECTIONALLY SOLIDIFIED Ti-46Al-2Cr-2Nb ALLOY. Acta Metall Sin, 2013, 49(11): 1374-1380.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00398      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1374

[1] Yamaguchi M, Johnson D R, Lee H N, Inui H.  Intermetallics, 2000; 8: 511

[2] Kim S E, Lee Y T, Oh M H, Inui H, Yamaguchi M.  Intermetallics, 2000; 8: 399
[3] Zollinger J, Lapin J, Daloz D, Combeau H.  Intermetallics, 2007; 15: 1343
[4] Chen G L, Lin J P.  Physical Metallugry for Ordered Intermetallics. Beijing: Metallurgical Industry Press, 1999: 183
(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 183)
[5] Johnson D R.  Acta Mater, 1997; 45: 2523
[6] Johnson D R, Inui H, Muto S, Omiya Y, Yamanaka T.  Acta Mater, 2006; 54: 1077
[7] Xiao Z X.  PhD Dissertation, Beihang University, 2011
(肖志霞. 北京航空航天大学博士学位论文, 2011)
[8] Xiao Z X, Zheng L J, Yang L L, Yan J, Zhang H.  Acta Metall Sin, 2010; 10: 1223
(肖志霞, 郑立静, 杨莉莉, 闫洁, 张虎. 金属学报, 2010; 10: 1223)
[9] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  J Cryst Growth, 2011; 337: 52
[10] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  Appl Phys, 2011; 105A: 239
[11] Li X Z, Sun T, Yu C X, Su Y Q, Cao Y Z, Guo J J, Fu H Z.  Acta Metall Sin, 2009; 45: 1479
(李新中, 孙涛, 于彩霞, 苏彦庆, 曹勇智, 郭景杰, 傅恒志. 金属学报, 2009; 45: 1479)
[12] Thomas M, Bacos M T.  High Temp Mater, 2011; 3: 7
[13] Nie G.  PhD Dissertation, Harbin Institute of Technology, 2012
(聂革. 哈尔滨工业大学博士学位论文, 2012)
[14] Kim M C, Oh M H, Lee J H, Inui H, Yamaguchi M, Wee D M.  Mater Sci Eng, 1997; A239-240: 570
[15] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z.  Intermetallics, 2005; 13: 267
[16] Hunt J D. In: Argent B B ed.,  International Conference on Solidification and Casting of Metals. London: The Metals Society, 1979: 3
[17] Kurz W, Fisher D J.  Acta Mater, 1981; 29: 11
[18] Trivedi R.  Metall Mater Trans, 1984; 15A: 977
[19] Fan J L, Li X Z, Su Y Q, Chen R R, Guo J J, Fu H Z.  Mater Chem Phys, 2011; 130: 1232
[20] Fan J L.  PhD Dissertation, Harbin Institute of Technology, 2012
(樊江磊. 哈尔滨工业大学博士学位论文, 2012)
[21] Fan J L, Li X Z, Su Y Q, Guo J J, Fu H Z.  Mater Des, 2012; 34: 552
[22] Liu C.  PhD Dissertation, Harbin Institute of Technology, 2007
(刘畅. 哈尔滨工业大学博士学位论文, 2007)
[23] Zheng Y B, Li S M, Li Z X, Zhu P C, Fu H Z.  J Aeronaut Mater, 2009; 29: 12
(郑元斌, 李双明, 李臻熙, 朱鹏超, 傅恒志. 航空材料学报, 2009; 29: 12
[24] Muto S, Yamanaka T, Lee H N, Johnson D R, Inui H, Yamaguchi M.  Adv Eng Mater, 2001; 3: 391
[25] Johnson D R, Inui H, Yamaguchi M.  Intermetallics, 1998; 6: 647
[26] Spinelli J E, Rosa D M, Ferreira I L, Garcia A.  Mater Sci Eng, 2004; A383: 271
[27] Appel F, Paul J D H, Oehring M.  Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley, 2011: 33
[28] Trivedi R, Kurz W.  Solidification Processing of Eutectic Alloys.Pennsylvania: Metallurgical Society, 1988: 3
[1] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[2] 高一涵, 刘刚, 孙军. 耐热铝基合金研究进展:微观组织设计与析出策略[J]. 金属学报, 2021, 57(2): 129-149.
[3] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[4] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[5] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[6] 张茂龙, 鲁艳红, 陈胜虎, 戎利建, 陆皓. 不锈钢堆焊层稀释率对核电接管安全端试环焊接接头组织和力学性能的影响[J]. 金属学报, 2020, 56(8): 1057-1066.
[7] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[10] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[11] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[12] 刘怡, 涂坚, 杨威华, 尹瑞森, 谭力, 黄灿, 周志明. 形变及退火工艺对Fe47Mn30Co10Cr10B3双相高熵合金组织演变的影响[J]. 金属学报, 2020, 56(12): 1569-1580.
[13] 王占花, 惠卫军, 谢志奇, 张永健, 赵晓丽. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451.
[14] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.