Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 629-634    DOI: 10.3724/SP.J.1037.2013.00027
  论文 本期目录 | 过刊浏览 |
热氧化法制备超疏水Ti表面及其耐腐蚀性
康志新,郭明杰
华南理工大学机械与汽车工程学院国家金属材料近净成形工程技术研究中心, 广州 510640
FABRICATION OF SUPERHYDROPHOBIC Ti SURFACE BY THERMAL OXIDATION AND ITS ANTICORROSION PROPERTY
KANG Zhixin, GUO Mingjie
National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
引用本文:

康志新,郭明杰. 热氧化法制备超疏水Ti表面及其耐腐蚀性[J]. 金属学报, 2013, 49(5): 629-634.
KANG Zhixin, GUO Mingjie. FABRICATION OF SUPERHYDROPHOBIC Ti SURFACE BY THERMAL OXIDATION AND ITS ANTICORROSION PROPERTY[J]. Acta Metall Sin, 2013, 49(5): 629-634.

全文: PDF(1424 KB)  
摘要: 

利用简单的热氧化法制备了具有微/纳双尺度粗糙结构的多孔Ti表面, 经自组装分子膜修饰后使纯Ti表面实现了超疏水特性. 利用XRD,FE-SEM, XPS, 光学视频接触角仪、腐蚀溶液浸泡及动电位极化法对TO-OTS超疏水膜进行表征及分析. 结果表明: 热氧化后的微/纳双尺度粗糙结构赋予TO-OTS优越的低黏附超疏水性能, 其静态接触角达166.0°, 滚动角低至2.0°, 对强酸强碱溶液和某些盐溶液都具有超疏性, 更可抵抗氢氟酸溶液对Ti基底的腐蚀. 动电位极化分析结果显示, TO-OTS超疏水膜显著提高了Ti在3.5%NaCl溶液中的耐腐蚀性能, 保护效率达到99.1%.

关键词 Ti热氧化自组装分子膜超疏水耐腐蚀性    
Abstract

Ti and its alloys, due to their good stability and high strength-to-density ratio, have been widely used in many industry fields, such as aviation, navigation, biomedical devices, etc. It is quite necessary to improve their performance against corrosion of water pollution or other corrosive mediums in these fields. The process of thermal oxidation is an effective way to enhance their corrosion resistance while high-temperature oxidation is usually thought to have detrimental effects. However, the porous structure caused by high-temperature oxidation is found to be beneficial for preparation of superhydrophobic surface, which has gotten extensive application in improvement of metals' antcorrosion ability. In this study, a rough surface with hierarchical micro- and nano- structures was formed on Ti by a heat treatment process in atmospheric environment at 1000 ℃ for 1 h. The following air-cooling process separated the flaky yellow oxide layer formed on Ti plate during the oxidation from the substrate and a grey porous substrate (TO) was obtained. Furthermore, TO was modified with n-octadecyltrichlorosilane (OTS), leading to the formation of superhydrophobic Ti surface (TO-OTS). The TO-OTS film exhibited a static contact angle of 166.0° and a rolling angle of 2.0° for 5 μL water droplets. The as-prepared film was characterized by XRD, FE-SEM, XPS and contact angle measurements. The results indicated that dual-scale roughness leaved by thermal oxidation endowed TO-OTS with excellent non-sticking superhydrophobicity and durability, even for some corrosive liquids including salt solution and acidic and alkali solutions at different pH values. By means of immersion test, TO-OTS displayed great non corrodibility against HF solution, with a protective mirror-like air film formed above it. Moreover, based on potentiodynamic polarization measurement in 3.5%NaCl solution, the corrosion resistance of TO-OTS was proved to have a significant enhancement with a protection efficiency of 99.1%. This is a facile method for preparation of large-scale or complex shaped superhydrophobic surfaces without requirement of expensive instrument, which may provide an effective protection for Ti under harsh environment.

Key wordsTi    thermal oxidation    self-assembled monolayer    superhydrophobic    anticorrosion
收稿日期: 2013-01-15     
基金资助:

国家自然科学基金项目 51075151 和广东省自然科学基金重点项目 10251064101000001 资助

作者简介: 康志新, 男, 1962年生, 教授

[1] Ou J F, Liu M Z, Li W, Wang F J, Xue M S, Li C Q.  Appl Surf Sci, 2012; 258: 4724


[2] Zhang F, Chen S G, Dong L H, Lei Y H, Liu T, Yin Y S.  Appl Surf Sci, 2011; 257: 2587

[3] Nakajima A, Hashimoto K, Watanabe T.  Langmuir, 2000; 16: 7044

[4] Gao X, Jiang L.  Nature, 2004; 432: 36

[5] Isimjan T T, Wang T, Rohani S.  Chem Eng J, 2012; 210: 182

[6] Xu Q J, Deng X Q, Pan H T, Yun H.  Acta Metall Sin, 2012; 48: 94

(徐群杰, 邓先钦, 潘红涛, 云虹. 金属学报, 2012; 48: 94)

[7] He T, Wang Y C, Zhang Y J, Lv Q, Xu T G, Liu T.  Corros Sci, 2009; 51: 1757

[8] Kang Z X, Lai X M, Sang J, Li Y Y.  Thin Solid Films, 2011; 520: 800

[9] Xi J M, Feng L, Jiang L.  Appl Phys Lett, 2008; 92: 53102

[10] Siva R K D, Sun Y.  Surf Coat Technol, 2005; 198: 447

[11] Ashrafizadeh A, Ashrafizadeh F.  J Alloys Compd, 2009; 480: 849

[12] Jiang L, Zhao Y, Zhai J.  Angew Chem Int Ed, 2004; 116: 4438

[13] Hauffe K.  Oxidation of Metals. New York: Plenum Press, 1965: 209

[14] Nakata K, Sakai M, Ochiai T, Murakami T, Takagi K, Fujishima A.  Mater Lett, 2012; 70: 160

[15] Dong H, Li X Y.  Mater Sci Eng, 2000; A280: 303

[16] Bhushan B, Her E K.  Langmuir, 2010; 26: 8207

[17] Bhushan B, Jung Y C, Koch K.  Langmuir, 2009; 25: 3240

[18] Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y.  Langmuir, 1999; 15: 4321

[19] Wenzel R N.  Ind Eng Chem, 1936; 28: 988

[20] Cassie A B D, Baxter S.  Trans Faraday Soc, 1944; 40: 546

[21] Wang S T, Feng L, Jiang L.  Adv Mater, 2006; 18: 767

[22] Gao L, McCarthy T J.  Langmuir, 2007; 23: 3762

[23] Gao L, McCarthy T J.  Langmuir, 2006; 22: 2966

[24] Koga T, Morita M, Ishida H, Yakabe H, Sasaki S, Sakata O, Otsuka H, Takahara A.  Langmuir, 2005; 21: 905

[25] Zhu X T, Zhang Z Z, Yang J, Xu X H, Men X H, Zhou X Y.  J Colloid Interf Sci, 2012; 380: 182
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[3] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[4] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[5] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[6] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[7] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[9] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[10] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[11] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[12] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[13] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[14] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[15] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.