Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 320-324    DOI: 10.3724/SP.J.1037.2012.00562
  论文 本期目录 | 过刊浏览 |
Ti, C超过饱和固溶铝基复合薄膜的微结构和力学性能
尚海龙1, 2,沈洁1,杨铎1,孙士阳1,李戈扬1
1)上海交通大学金属基复合材料国家重点实验室, 上海 200240
2)上海电机学院机械学院, 上海 200245
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti, C SOLID SOLUTION SUPERSATURATED Al-BASED COMPOSITE FILMS
SHANG Hailong 1, 2, SHEN Jie 1, YANG Duo 1, SUN Shiyang 1, LI Geyang 1
1)State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
2)School of Mechanical, Shanghai Dianji University, Shanghai 200245
引用本文:

尚海龙,沈洁,杨铎,孙士阳,李戈扬. Ti, C超过饱和固溶铝基复合薄膜的微结构和力学性能[J]. 金属学报, 2013, 49(3): 320-324.
SHANG Hailong, SHEN Jie, YANG Duo, SUN Shiyang, LI Geyang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ti, C SOLID SOLUTION SUPERSATURATED Al-BASED COMPOSITE FILMS[J]. Acta Metall Sin, 2013, 49(3): 320-324.

全文: PDF(588 KB)  
摘要: 

采用Al和TiC靶通过磁控共溅射方法制备了Ti∶C≈1的不同Ti和C含量的铝基复合薄膜, 研究了Ti和C含量对薄膜微观结构和力学性能的影响.结果表明: Ti和C的共同加入使复合薄膜形成了同时具有置换固溶和间隙固溶特征的“双超”过饱和固溶体, 复合薄膜的晶粒尺寸在较低的溶质含量下就迅速减小到100 nm以下, 并随溶质含量的增加继续减小. 相应地, 薄膜的硬度也从纯Al的1.3 GPa迅速提高, 在含0.6%(Ti, C)时可达到2.1 GPa, 并在含6.4%(Ti, C)时达到最高值7.0 GPa. 随溶质含量的进一步提高, 复合薄膜逐渐呈现非晶态, 硬度也略有降低. 研究结果显示了Ti和C双超过饱和固溶对铝基薄膜具有显著的晶粒细化作用和强化效果.

关键词 铝基复合薄膜微结构过饱和固溶力学性能磁控溅射    
Abstract

Alloy films could form substitutionally supersaturated solute solution because of the non-equilibrium characteristics of physical vapor deposition (PVD) and gained grain refining and mechanical properties improving. In order to reveal the structure characteristics and strengthening effect of substitutionally and interstitially supersaturated solid solution films, a series of aluminum-based composite films with different Ti and C contents were synthesized by magnetron co-sputtering Al and TiC targets. EDS, XRD,TEM, STEM and nanoindenter were used to characterize the microstructure and mechanical properties of the composite films. The results showed that Ti and C dissolved in the grains with much higher solute contents than their solubility limits at thermodynamic equilibrium state and enriched at the boundary. The composite film formed “dual-supersaturated solid solution” exhibiting both substitutional and interstitial features. In lower solute contents, the grain size of the composite film decreased to less than 100 nm rapidly because of severe lattice distortion. The hardness of the film increased to 2.1 GPa from pure Al 1.3 GPa when containing 0.6%(Ti, C). With the increase of the solute contents, the film hardness increased gradually and achieved the highest value of 7.0 GPa when containing 6.4%(Ti, C). Then the composite film transformed into amorphous and its hardness also slightly reduced. The study showed significant grain refining and strengthening effects of dual-supersaturation of Ti and C in lower content on aluminum--based film and provided a way to improve the mechanical properties of metal films.

Key wordsAl-based composite film    microstructure    supersaturated solid solution    mechanical property    magnetron sputtering
收稿日期: 2012-09-23     
基金资助:

国家重点基础研究发展计划项目2012CB619601和国家自然科学基金项目51071104资助

作者简介: 尚海龙, 男, 1984年生, 博士生

[1] Creus J, Berziou C, Cohendoz S, Perez A, Rebere C, Reffass M, Touzain S, Allely C, Gachon Y, Heau C,Sanchette F, Billard A.Corros Sci, 2012; 57: 162


[2] Leyland A, Matthews A.Surf Coat Technol, 2004; 177--178: 317

[3] Sanchette F, Ducros C, Billard A, Rebere C, Berziou C, Reffass M, Creus J.Thin Solid Films, 2009; 518: 1575

[4] Lewin E, Buchholt K, Lu J, Hultman L, Spetz L A, Jansson U.Thin Solid Films, 2010; 518: 5104

[5] Almtoft P K, Ejsing M A, Bφttiger J, Chevallier J.J Mater Res, 2007; 22: 1018

[6] El-Moneim A A, Akiyama E, Ismail M K, Hashimoto K.Corros Sci, 2011; 53: 2988

[7] Naka M, Maeda M, Shibayanagi T, Yuan H, Mori H.Vacuum, 2002; 65: 503

[8] Sanchette F, Billard A.Surf Coat Technol, 2001; 142: 218

[9] Perez A, Sanchette F, Billard A, Rebere C, Berziou C, Touzain S, Creus J.Mater Chem Phys, 2012; 132: 154

[10] Naka M, Shibayanag T, Maed M, Zhao S, Mori H.Vacuum, 2000; 59: 252

[11] Chandra T, Tsuzaki K, Militzer M, Ravindran C.Scr Mater, 2001; 44: 2035

[12] Boukhris N, Lallouche S, Debilia M Y, Draissia M.Eur Phys J Appl Phys, 2009; 45: 30501

[13] Draissia M, Boudemagh H, Debili Y M.Phys Scr, 2004; 69: 348

[14] Rupert J T, Trenkle C J, Schuh A C.Acta Mater, 2011; 59: 1619

[15] Mori M, Shibayanagi T, Maeda M, Naka M.Scr Mater, 2001; 44: 2035

[16] Mayrhofer H P, Mitterer C, Hultman L, Clemens H.Prog Mater Sci, 2006; 51: 1032

[17] Silva M, Wille C, Klement U, Choi P, Al-Kassab T.Mater Sci Eng, 2007; A445: 31

[18] Liu F.Appl Phys, 2005; 81A: 1095

[19] Pinkas M, Frage N, Froumin N, Pelleg J, Dariel M P.J Vac Sci Technol, 2002; 20A: 887

[20] Li X Y, Hua J D, Wang H Y, Guo Z X, Chumakov A N.Mater Sci Eng, 2007; A458: 235

[21] Meng Q P, Rong Y H, Hsu T Y.Mater Sci Eng, 2007; A471: 22

[22] Fleischer R L.The Strengthening of Metals. New York: Reinhold Publishing Corp, 1964: 93

[23] Labusch R.Phys Status Solidi, 1970; 41: 659

[24] Suzuki H.Dislocations and Mechanical Properties of Crystals. New York: Wiley, 1957: 361

[25] Meng Q P, Zhou N, Rong Y H, Chen S P, Hsu T Y (Xu Z Y).Acta Mater, 2002; 50: 4563

[26] Wu X L, Zhu Y T.Appl Phys, 2006; 89A: 031922

[27] Legros M, Gianola S D, Hemker J K.Acta Mater, 2008; 56: 3380

 
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.