Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1495-1502    DOI: 10.3724/SP.J.1037.2012.00309
  论文 本期目录 | 过刊浏览 |
海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响
张杰1,宋秀霞1,2,栾鑫1,3,孙彩霞1,4,段继周1,侯保荣1
1. 中国科学院海洋研究所, 青岛 266071
2. 上海海洋大学水产与生命学院, 上海 201306
3. 中国海洋大学海洋生命学院, 青岛 266100
4. 烟台大学化学化工学院, 烟台 264005
EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn–Al–Cd ANODE
ZHANG Jie 1, SONG Xiuxia 1,2, LUAN Xin 1,3, SUN Caixia 1,4, DUAN Jizhou 1,HOU Baorong 1
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306
3. College of Marine Life Sciences, Ocean University of China, Qingdao 266100
4. Chemistry and Chemical Engineering College, Yantai University, Yantai 264005
引用本文:

张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.
ZHANG Jie SONG Xiuxia LUAN Xin SUN Caixia DUAN Jizhou HOU Baorong. EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn–Al–Cd ANODE[J]. Acta Metall Sin, 2012, 48(12): 1495-1502.

全文: PDF(1630 KB)  
摘要: 

从锈层中分离出黄色细菌, 经分子生物学技术鉴定为海藻希瓦氏(Shewanella algae, SA)菌. 采用分光光度法研究了其生长曲线的变化, 发现该细菌的生长分为3个阶段: 指数生长阶段、稳定阶段和衰亡阶段. 采用电化学交流阻抗技术、扫描电镜和荧光显微技术等方法研究了SA菌对Zn--Al--Cd牺牲阳极材料腐蚀行为的影响.结果表明, 含SA菌培养基的试样的开路电位要高于无菌培养基中试样的电位,电荷传递电阻Rct值大于无菌培养基的Rct值,说明该SA菌能够抑制试样的腐蚀. 分析原因是细菌在试样表面形成生物膜,隔离了腐蚀介质与试样的接触, 同时, 细菌的生长消耗了氧气, 抑制了腐蚀的发生;试样在含SA体系中, 5 d时, 其表面覆盖比较致密的生物膜; 而在不含细菌的体系中,试样表面有明显的腐蚀坑; 试样在含SA体系中7 d时, 生成比较完整的生物膜, 随着体系中营养物质及氧气的减少, SA菌逐渐减少, 11 d后试样表面附着的SA菌所剩不多.

关键词 希瓦氏菌 牺牲阳极 电化学阻抗谱 分子生物学 腐蚀    
Abstract

Shewanella is a typical iron–reducing bacteria which can reduce insoluble ferric iron to soluble ferrous iron and consume oxygen, being considered as the reasons of corrosion inhibition. The main study on Shewanella algae (SA) is the degradation of environmentally harmful organic compounds and heavy metals, and there are very few reports on the interaction of metal corrosion and SA. In this paper, the bacteria isolated from yellow rust layer were identified as SA by using molecular biology techniques. The growth curve of SA was determined with spectrophotography. The results showed that the growth curve was divided into three phases: exponential growth phase, steady phase and decay phase. The effects of SA on corrosion of Zn–Al–Cd anode were investigated by using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and fluorescence microscopy (FM).The results showed that corrosion potential for samples exposed to the culture medium containing SA was higher than that for samples exposed to the sterile culture medium during the whole experiment. Rct value in the culture medium containing SA was much greater than that of anode in the sterile culture medium. The bacteria could inhibit the corrosion of the specimen. The reason was that a biofilm layer was formed on the sample surface and the oxygen was consumed through the metabolic activities of bacteria in the culture medium containing bacteria. The biofilm layer was formed on the 5th day in the culture medium containing bacteria. While in bacteria–free system, obvious corrosion pits and white corrosion products were seen on the sample surface. The complete biofilm was formed on 7th day, and it detached from the sample on 11th day because of the exhaustion of nutrients and oxygen, showing that the biofilm formation had a great relationship with the presence of nutrients and oxygen.

Key wordsShewanella    sacrificial anode    electrochemical impedance spectroscopy    molecular biology    corrosion
收稿日期: 2012-05-28     
基金资助:

国家自然科学基金项目41006054和中国科学院知识创新工程重要方向项目KZCX2-EW-205资助

作者简介: 张杰, 男, 1976年生, 副研究员, 博士

[1] Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755

(吴进怡, 柴 柯, 肖伟龙, 杨雨辉, 韩恩厚. 金属学报, 2010; 46: 755)

[2] Dumas C, Basseguy R, Bergel A. Electrochim Acta, 2008; 53: 5235

[3] Mansfeld F. Electrochim Acta, 2007; 52: 7670

[4] MacDonell M T, Colwell R R. Int J Syst Evol Microbiol, 1985; (6): 171

[5] Manohar A K, Bretschger O, Nealson K H, Mansfeld F. Bioelectrochem, 2008; 72: 149

[6] Manohar A K, Mansfeld F. Electrochim Acta, 2009; 54: 1664

[7] Mohan S V, Raghavulu S V, Sarma P N. Biosens Bioelectron, 2008; 24: 41

[8] Lee A K, Newman D K. Appl Microbiol Biotechnol, 2003; 63(1): 134

[9] Wang H B, Hu C, Hu X X, Yang M, Qu J H. Water Res, 2012; 46: 1070

[10] Dubiel M, Hsu C H, Chien C C, Mansfeld F, Newman D K. Appl Environ Microbiol, 2002; 68: 1440

[11] Herrera L K, Videla H A. Int Biodeterior Biodegrad, 2009; 63: 891

[12] Lee A K, Buehler M G, Newman D K. Corros Sci, 2006; 48: 165

[13] Kus E, Nealson K, Mansfeld F. Corros Sci, 2007; 49: 3421

[14] Nagiub A, Mansfeld F. Electrochim Acta, 2002; 47: 2319

[15] Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K, Owada K. Int J Syst Bacteriol, 1992; 42: 628

[16] Guha H, Jayachandran K, Maurrasse F. Environ Pollut, 2001; 115: 209

[17] Shin H Y, Singhal N, Park J W. Chemosphere, 2007; 68: 1129

[18] Long P, Li Q F. Corros Sci Prot Technol, 2007; 19: 235

(龙萍, 李庆芬. 腐蚀科学与防护技术, 2007; 19: 235)

[19] Rousseau C, Baraud F, Leleyter L, Gil O. J Hazard Mater, 2009; 167: 953

[20] Mottin E, Caplat C, Latire T, Mottier A, Mahaut M L, Costil K, Barillier D, Lebel J M, Serpentini A. Mar Pollut Bull, 2012; http://dx.doi.org/10.1016/j.marpolbul.2012.06.017

[21] Wagner P, Little B, Hart K, Ray R, Thomas D, Trzaskoma–Paulette P, Lucas K. Int Biodeterior Biodegrad, 1996; 37: 151

[22] Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250

(张杰, 刘奉令, 李伟华, 段继周, 侯保荣. 金属学报, 2010; 46: 1250)

[23] Liu J H, Liu F, Li S M. Corros Sci Prot Technol, 2001; 13: 85

(刘建华, 刘芳, 李松梅. 腐蚀科学与防护技术, 2001; 13: 85)

[24] Mansfeld F. Electrochim Acta, 2007; 52: 7670 

[25] Liu J H, Liang X, Li S M. J Chin Rare Earth Soc, 2006; 24: 81

(刘建华, 梁馨, 李松梅. 中国稀土学报, 2006; 24: 81)

[26] Wan Y, Zhang D, Liu H Q, Li Y J, Hou B R. Electrochim Acta, 2010; 55: 1528

[27] Liu G Z, Qian J H, Ma Y, Wu J H. J Electrochem, 2002; 8: 191

(刘光洲, 钱建华, 马 焱, 吴建华. 电化学, 2002; 8: 191)

[28] Liu J, Yan Y G, Chen G Z, Liu G Z, Li Q F. J Electrochem, 2006; 12: 93

 (林晶, 阎永贵, 陈光章, 刘光州, 李庆芬. 电化学, 2006; 12: 93)

[29] Long P, Yang S W, Luo Z H. Appl Sci Technol, 2003; 30(7): 1

(龙萍, 杨世伟, 罗兆红. 应用科技, 2003; 30(7): 1)

[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[6] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[7] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[11] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[12] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[15] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.