Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1109-1115    DOI: 10.3724/SP.J.1037.2012.00163
  论文 本期目录 | 过刊浏览 |
焊接参数对AlCuLi合金搅拌摩擦焊接头微观结构和力学性能的影响
王东1), 董春林2), 肖伯律1), 高崇2), 何淼2), 栾国红2), 马宗义1)
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2) 中航工业北京航空制造工程研究所, 北京 100024
EFFECT OF WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AlCuLi ALLOY JOINTS
WANG Dong1),  DONG Chunlin2), XIAO Bolv1), GAO Cong2),  HE Miao2),  LUAN Guohong2),  MA Zongyi1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
引用本文:

王东 董春林 肖伯律 高崇 何淼 栾国红 马宗义. 焊接参数对AlCuLi合金搅拌摩擦焊接头微观结构和力学性能的影响[J]. 金属学报, 2012, 48(9): 1109-1115.
, , , , , . EFFECT OF WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED AlCuLi ALLOY JOINTS[J]. Acta Metall Sin, 2012, 48(9): 1109-1115.

全文: PDF(4841 KB)  
摘要: 在不同的搅拌头转速及焊接速度下, 对2 mm厚AlCuLi合金进行了搅拌摩擦焊接. 结果表明, 焊核区由细小等轴再结晶晶粒组成. 随搅拌头转速增加, 晶粒尺寸逐渐增加; 随焊接速度增加, 晶粒尺寸略有减小. TEM分析表明, 焊核区的析出相大部分溶解, 在随后的冷却过程中形成粗大的析出相, 而在热影响区析出大量的粗大平衡相. 在较低的焊接速度(80 mm/min)下, 接头在热影响区的硬度最低点发生断裂, 随搅拌头转速增加, 接头强度逐渐升高, 最高可达母材的87%, 延伸率约为10%. 而在较高的焊接速度(200 mm/min)下, 搅拌头转速较低时, 焊核区材料流动不充分, 样品在焊核处发生断裂, 强度较低, SEM分析表明, 断口出现材料流动不充分导致的缺陷; 随搅拌头转速增加, 断口处缺陷明显减少, 对强度影响不显著, 接头强度可达母材的84%.
关键词 搅拌摩擦焊Al-Li合金力学性能显微组织再结晶    
Abstract:Friction stir welding (FSW) of a novel AlCuLi alloy was conducted to investigate the effect of welding parameters on the microstructure and mechanical properties of the joints. The fine and equiaxed dynamically rotation rate increased, the size of the grains in the NZ increased. However, with increasing the welding speed, the size of the grains in the NZ decreased slightly. TEM analyses indicated that most of the precipitates in the NZ dissolved into the matrix during FSW and some coarse precipitates formed during subsequent cooling process. Moreover, many coarse precipitates were observed in the heat affected zone (HAZ) due to the FSW thermal cycle. At a low welding speed of 80 mm/min, the ultimate tensile strength of the joints increased as the rotation rate increased, and could reach up to 442 MPa which was 87% of that of the base metal. All of the joints failed in the lowest hardness zone of the HAZ. At a high welding speed of 200 mm/min, some defects resulting from insufficient material flow were observed on the fracture surfaces. At a low rotation rate, the joints failed along the defects in the NZ and exhibited a low strength. As the rotation rate increased, the size and number of the defects decreased. Therefore, the effect of the defects on the strength of the joints was significantly reduced, and a joint efficiency of 84% was obtained.
Key wordsfriction stir welding    Al-Li alloy    mechanical property    microstructure    recrystallization
收稿日期: 2012-03-31     
ZTFLH: 

TG 146. 2

 
基金资助:

总装预研基金资助项目9140A18050109HK55

作者简介: 王东, 男, 1980年生, 助理研究员, 硕士
[1] Wang Z T, Tian R Z. Handbook of Aluminum Alloy and Processing. 3rd Ed., Changsha: Central South University Press, 2005: 317

(王祝堂, 田荣璋, 铝合金及其加工手册. 第3版, 长沙: 中南大学出版社, 2005: 317)

[2] Wang S C, Starink M J. Int Mater Rev, 2005; 50: 193

[3] Kostrivas A, Lippold J C. Int Mater Rev, 1999; 44: 217

[4] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1

[5] Wang D, Liu J, Xiao B L, Ma Z Y. Acta Metall Sin, 2010; 46: 589

(王东, 刘杰, 肖伯律, 马宗义. 金属学报, 2010; 46: 589)

[6] Xie G M, Ma Z Y, Geng L. Acta Metall Sin, 2008; 44: 665

(谢广明, 马宗义, 耿 林. 金属学报, 2008; 44: 665)

[7] Steuwer A, Dumont M, Altenkirch J, Birosca S, Deschamps A, Prangnell P B,Withers P J. Acta Mater, 2011; 59: 3002

[8] Wei S T, Hao C Y, Chen J C. Mater Sci Eng, 2007; A452– 453: 170

[9] Hatamleh O. Mater Sci Eng, 2008; A492: 168

[10] Shukla A K, Baeslack W A. Sci Technol Weld Joining, 2009; 14: 376

[11] Jolu T L, Morgeneyer T F, Lorenzon A F G. Sci Technol Weld Joining, 2010; 15: 694

[12] Salem H G, Reynolds A P, Lyons J S. Scr Mater, 2002; 46: 337

[13] Fonda R W, Bingert J F. Metall Mater Trans, 2006; 37A: 3593

[14] Zhang Z, Xiao B L,Wang D, Ma Z Y. Metall Mater Trans, 2011; 42A: 1717

[15] Liu F C, Ma Z Y. Acta Metall Sin, 2008; 44: 319

(刘峰超, 马宗义. 金属学报, 2008; 44: 319)

[16] Lynch S P, Muddle B C, Pasang T. Acta Mater, 2001; 49: 2863

[17] Liu F C, Ma Z Y. Metall Mater Trans, 2008; 39A: 2378

[18] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z. Acta Metall Sin, 2007; 43: 225

(任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225)

[19] Yoshimura R, Konno T J, Abe E, Hiraga K. Acta Mater, 2003; 51: 4251

[20] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955

[21] Zhang Q, Xiao B L, Wang Q Z, Ma Z Y. Mater Lett, 2011; 65: 2070

[22] Ni D R, Xue P, Ma Z Y. Metall Mater Trans, 2011; 42A: 2125

[23] Zhang X X, Xiao B L, Ma Z Y. Metall Mater Trans, 2011; 42A: 3229

[24] Cavaliere P, Cabibbo M, Panella F, Squillace A. Mater Design, 2009; 30: 3622

[25] Qin G L, Zhang K, Zhang W B, Wu C S. Trans China Weld Inst, 2010; 31: 5

(秦国梁, 张坤, 张文斌, 武传松. 焊接学报, 2010; 31: 5)

[26] Ghosh K S, Das K, Chatterjee U K. Metall Mater Trans, 2004; 35A: 3681
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[9] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[12] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[13] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[14] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.