Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 709-616    DOI: 10.3724/SP.J.1037.2011.00655
  论文 本期目录 | 过刊浏览 |
累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究
詹美燕1,李春明1,张卫文2
1. 华南理工大学材料科学与工程学院, 广州 510640
2. 华南理工大学国家金属材料近净成形工程技术研究中心, 广州 510640
AN EBSD STUDY ON THE MICROSTRUCTURE AND TEXTURE EVOLUTION OF AZ31 MAGNESIUM ALLOY DURING ACCUMULATIVE ROLL-BONDING
ZHAN Meiyan1, LI Chunming1,ZHANG Weiwen2
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
2. National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640
引用本文:

詹美燕,李春明,张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48(6): 709-616.
, , . AN EBSD STUDY ON THE MICROSTRUCTURE AND TEXTURE EVOLUTION OF AZ31 MAGNESIUM ALLOY DURING ACCUMULATIVE ROLL-BONDING[J]. Acta Metall Sin, 2012, 48(6): 709-616.

全文: PDF(3203 KB)  
摘要: 对AZ31镁合金热轧板在350 ℃进行了累积叠轧焊(ARB)变形,采用EBSD技术研究了AZ31镁合金的微观组织和织构演变.结果表明, ARB可以显著细化AZ31镁合金的晶粒组织,经过3道次变形后平均晶粒尺寸为2.18 μm,后续的ARB变形使AZ31镁合金的微观组织更均匀,但晶粒不会再显著细化, 说明存在临界ARB变形道次,使晶粒细化和晶粒长大之间达到动态平衡. AZ31镁合金在ARB 变形过程中的晶粒细化机制为连续动态再结晶, 尤其还观察到了旋转动态再结晶.动态再结晶的形变储存能来源于多道次累积的剧烈应变和沿厚度方向分布复杂的剪切变形. ARB变形过程中旋转动态再结晶和剪切变形使新晶粒c轴发生旋转, 导致基面织构弱化.
关键词 Mg-Al-Zn合金累积叠轧焊微观组织织构    
Abstract:Accumulative roll-bonding (ARB) process is appropriate to manufacture nanocrystalline and ultrafine grained sheets and plates which are most widely used material shapes in the commercial and industrial fields. The ARB process was proved to be very effective in refining grains and enhancing the strength of aluminum, steels and copper. However, the ARB was used only for cubic materials and rarely for hcp structured metal. The information available in the literatures about the microstructure change of magnesium alloys during the ARB process is still very limited. ARB was applied to AZ31 magnesium alloy sheets in the present work. ARB procedures were repeated for up to 5 cycles. Before each ARB cycle, the stacked sheets were heated at 350 ℃ for 5 min in an electrical furnace near the rolling mill. The microstructure and texture evolution of an AZ31 during ARB were characterized by electron backscatter diffraction (EBSD). The results show that ARB is an effective grain refinement method for producing AZ31 sheets with fine grain structure. Significant grain refinement was achieved after 3 ARB cycles with average size of about 2.18 μm. Grain refinement almost occured during the first three cycles and the distributions of grain size became more uniform as the cycle number increased. The results confirm the existence of critical ARB cycles to obtain dynamic balance between grain refinement and grain growth during the ARB process. Fraction of high angle grain boundaries increased with the increase of ARB cycles. Continuous dynamic recrystallization (CDRX) including rotation dynamic recrystallization (RDRX) occured during ARB of AZ31 as the grain refinement mechanisms. The dynamic recrystallization of AZ31 was activated and enhanced by the accumulated severe strain and shear strain across sheet thickness during ARB. In addition, large strain rate during ARB also contributed to grain refinement with the increase of Zener-Hollomon parameter. Microtextures of AZ31 tended to decrease and the average Schmid factor increased during the first three ARB cycles due to the sever and complex distrubution of shear strain, rotation dynamic recrystallization and rotating the new grains during ARB.
Key wordsMg-Al-Zn alloy    accumulative roll-bonding (ARB)    microstructure    texture
收稿日期: 2011-10-21     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金资助项目50801027

作者简介: 詹美燕, 女, 1973年生, 副研究员, 博士
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.  Prog Mater Sci,2000; 45: 103

[2] Furukawa M, Horita Z, Nemoto M, Langdon T G.  Mater Sci Eng,2002; 324: 82

[3] Zhilyaev A P, Nurislamova G V, Kim B K, Baro M D, Szpunar J A,Langdon T G.  Acta Mater, 2003; 51: 753

[4] Tsuji N, Saito Y, Lee S H, Minamino Y.  Adv Eng Mater, 2003; 5: 338

[5] Kim W J, Jeong H T.  Mater Trans, 2005; 46: 251

[6] Yamashita A, Horita Z, Langdon T G.  Mater Sci Eng, 2001; A30: 142

[7] Satio Y, Utsunomiya H, Tsuji N, Sakai T.  Acta Mater, 1999; 47: 579

[8] Wang Q F, Xiao X P, Hu J, Xu W W,  Zhao X Q, Zhao S J. J Iron Steel Res Int, 2007; 14: 167

[9] Perez--Prado M T, del Valle J A, Ruano O A.  Scr Mater,2004; 51: 1093

[10] Del Valle J A, Perez--Prado M T, Ruano O A.  Mater Sci Eng,2005; A410--411: 353

[11] Guo Q, Yan H G, Chen Z H, Zhang H.  Acta Metall Sin, 2006; 42: 739

     (郭强, 严红革, 陈振华, 张辉. 金属学报, 2006; 42: 739)

[12] Liu C M , Liu Z J, Zhu X R, Zhou H T.  Chin J Nonferrous Met,2006; 16: 1

     (刘楚明, 刘子娟, 朱秀荣, 周海涛. 中国有色金属学报, 2006; 16: 1 )

[13] Ballufi R W, Komen Y, Schober T.  Surf Sci, 1972; 31: 69

[14] Sangl S, Tangri K.  Metall Trans, 1989; 20A: 479

[15] Valiev R Z, Kaibyshev O A, Khannanov S K.  Phys Status Solidi,1979; 52A: 447

[16] Tan J C, Tan M J.  Mater Sci Eng, 2003; A339: 124

[17] Liu Q.  Acta Metall Sin, 2010; 46: 1458

     (刘庆. 金属学报, 2010; 46: 1458)

[18] Ion S E, Humphreys F J, White S H.  Acta Mater, 1982; 30: 1909

[19] Chen Z H, Xu F Y, Fu D F, Xia W J. Chem Ind Eng Prog, 2006; 25: 140

     (陈振华, 许芳艳, 傅定发, 夏伟军. 化工进展, 2006; 25: 140)

[20] Chen Y J, Wang Q D, Peng J G, Zhai C Q.  Mater Sci Forum,2006; 503--504: 865

[21] Lee S H, Saito Y, Sakai T, Utsunomiya H.  Mater Sci Eng,2002; A325: 228

[22] Iwanaga K, Tashiro H, Okamoto H, Shimizu K.  J Mater Process Technol,2004; 155/156: 1313

[23] Chino Y, Mabuchi M, Kishihara R, Hosokawa H, Yamada Y, Wen C E,Shimojima K, Iwasaki H.  Mater Trans, 2002; 43: 2554

[24] Chino Y, Sassa K, Kamiy A, Mabuchi M.  Mater Sci Eng,2008; A473: 195

[25] del Valle J A, Perez-Prado M T, Ruano O A.  Mater Sci Eng,2003, A355: 68

[26] Koike J.  Mater Sci Forum, 2003; 419-422: 189
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[4] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[9] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.