Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 709-616    DOI: 10.3724/SP.J.1037.2011.00655
  论文 本期目录 | 过刊浏览 |
累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究
詹美燕1,李春明1,张卫文2
1. 华南理工大学材料科学与工程学院, 广州 510640
2. 华南理工大学国家金属材料近净成形工程技术研究中心, 广州 510640
AN EBSD STUDY ON THE MICROSTRUCTURE AND TEXTURE EVOLUTION OF AZ31 MAGNESIUM ALLOY DURING ACCUMULATIVE ROLL-BONDING
ZHAN Meiyan1, LI Chunming1,ZHANG Weiwen2
1. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
2. National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640
全文: PDF(3203 KB)  
摘要: 对AZ31镁合金热轧板在350 ℃进行了累积叠轧焊(ARB)变形,采用EBSD技术研究了AZ31镁合金的微观组织和织构演变.结果表明, ARB可以显著细化AZ31镁合金的晶粒组织,经过3道次变形后平均晶粒尺寸为2.18 μm,后续的ARB变形使AZ31镁合金的微观组织更均匀,但晶粒不会再显著细化, 说明存在临界ARB变形道次,使晶粒细化和晶粒长大之间达到动态平衡. AZ31镁合金在ARB 变形过程中的晶粒细化机制为连续动态再结晶, 尤其还观察到了旋转动态再结晶.动态再结晶的形变储存能来源于多道次累积的剧烈应变和沿厚度方向分布复杂的剪切变形. ARB变形过程中旋转动态再结晶和剪切变形使新晶粒c轴发生旋转, 导致基面织构弱化.
关键词 Mg-Al-Zn合金累积叠轧焊微观组织织构    
Abstract:Accumulative roll-bonding (ARB) process is appropriate to manufacture nanocrystalline and ultrafine grained sheets and plates which are most widely used material shapes in the commercial and industrial fields. The ARB process was proved to be very effective in refining grains and enhancing the strength of aluminum, steels and copper. However, the ARB was used only for cubic materials and rarely for hcp structured metal. The information available in the literatures about the microstructure change of magnesium alloys during the ARB process is still very limited. ARB was applied to AZ31 magnesium alloy sheets in the present work. ARB procedures were repeated for up to 5 cycles. Before each ARB cycle, the stacked sheets were heated at 350 ℃ for 5 min in an electrical furnace near the rolling mill. The microstructure and texture evolution of an AZ31 during ARB were characterized by electron backscatter diffraction (EBSD). The results show that ARB is an effective grain refinement method for producing AZ31 sheets with fine grain structure. Significant grain refinement was achieved after 3 ARB cycles with average size of about 2.18 μm. Grain refinement almost occured during the first three cycles and the distributions of grain size became more uniform as the cycle number increased. The results confirm the existence of critical ARB cycles to obtain dynamic balance between grain refinement and grain growth during the ARB process. Fraction of high angle grain boundaries increased with the increase of ARB cycles. Continuous dynamic recrystallization (CDRX) including rotation dynamic recrystallization (RDRX) occured during ARB of AZ31 as the grain refinement mechanisms. The dynamic recrystallization of AZ31 was activated and enhanced by the accumulated severe strain and shear strain across sheet thickness during ARB. In addition, large strain rate during ARB also contributed to grain refinement with the increase of Zener-Hollomon parameter. Microtextures of AZ31 tended to decrease and the average Schmid factor increased during the first three ARB cycles due to the sever and complex distrubution of shear strain, rotation dynamic recrystallization and rotating the new grains during ARB.
Key wordsMg-Al-Zn alloy    accumulative roll-bonding (ARB)    microstructure    texture
收稿日期: 2011-10-21     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金资助项目50801027

通讯作者: 詹美燕     E-mail: myzhan@scut.edu.cn
Corresponding author: Zhan-Meiyan     E-mail: myzhan@scut.edu.cn
作者简介: 詹美燕, 女, 1973年生, 副研究员, 博士

引用本文:

詹美燕,李春明,张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48(6): 709-616.
DAN Mei-Yan, LI Chun-Meng, ZHANG Wei-Wen. AN EBSD STUDY ON THE MICROSTRUCTURE AND TEXTURE EVOLUTION OF AZ31 MAGNESIUM ALLOY DURING ACCUMULATIVE ROLL-BONDING. Acta Metall Sin, 2012, 48(6): 709-616.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00655      或      https://www.ams.org.cn/CN/Y2012/V48/I6/709

[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.  Prog Mater Sci,2000; 45: 103

[2] Furukawa M, Horita Z, Nemoto M, Langdon T G.  Mater Sci Eng,2002; 324: 82

[3] Zhilyaev A P, Nurislamova G V, Kim B K, Baro M D, Szpunar J A,Langdon T G.  Acta Mater, 2003; 51: 753

[4] Tsuji N, Saito Y, Lee S H, Minamino Y.  Adv Eng Mater, 2003; 5: 338

[5] Kim W J, Jeong H T.  Mater Trans, 2005; 46: 251

[6] Yamashita A, Horita Z, Langdon T G.  Mater Sci Eng, 2001; A30: 142

[7] Satio Y, Utsunomiya H, Tsuji N, Sakai T.  Acta Mater, 1999; 47: 579

[8] Wang Q F, Xiao X P, Hu J, Xu W W,  Zhao X Q, Zhao S J. J Iron Steel Res Int, 2007; 14: 167

[9] Perez--Prado M T, del Valle J A, Ruano O A.  Scr Mater,2004; 51: 1093

[10] Del Valle J A, Perez--Prado M T, Ruano O A.  Mater Sci Eng,2005; A410--411: 353

[11] Guo Q, Yan H G, Chen Z H, Zhang H.  Acta Metall Sin, 2006; 42: 739

     (郭强, 严红革, 陈振华, 张辉. 金属学报, 2006; 42: 739)

[12] Liu C M , Liu Z J, Zhu X R, Zhou H T.  Chin J Nonferrous Met,2006; 16: 1

     (刘楚明, 刘子娟, 朱秀荣, 周海涛. 中国有色金属学报, 2006; 16: 1 )

[13] Ballufi R W, Komen Y, Schober T.  Surf Sci, 1972; 31: 69

[14] Sangl S, Tangri K.  Metall Trans, 1989; 20A: 479

[15] Valiev R Z, Kaibyshev O A, Khannanov S K.  Phys Status Solidi,1979; 52A: 447

[16] Tan J C, Tan M J.  Mater Sci Eng, 2003; A339: 124

[17] Liu Q.  Acta Metall Sin, 2010; 46: 1458

     (刘庆. 金属学报, 2010; 46: 1458)

[18] Ion S E, Humphreys F J, White S H.  Acta Mater, 1982; 30: 1909

[19] Chen Z H, Xu F Y, Fu D F, Xia W J. Chem Ind Eng Prog, 2006; 25: 140

     (陈振华, 许芳艳, 傅定发, 夏伟军. 化工进展, 2006; 25: 140)

[20] Chen Y J, Wang Q D, Peng J G, Zhai C Q.  Mater Sci Forum,2006; 503--504: 865

[21] Lee S H, Saito Y, Sakai T, Utsunomiya H.  Mater Sci Eng,2002; A325: 228

[22] Iwanaga K, Tashiro H, Okamoto H, Shimizu K.  J Mater Process Technol,2004; 155/156: 1313

[23] Chino Y, Mabuchi M, Kishihara R, Hosokawa H, Yamada Y, Wen C E,Shimojima K, Iwasaki H.  Mater Trans, 2002; 43: 2554

[24] Chino Y, Sassa K, Kamiy A, Mabuchi M.  Mater Sci Eng,2008; A473: 195

[25] del Valle J A, Perez-Prado M T, Ruano O A.  Mater Sci Eng,2003, A355: 68

[26] Koike J.  Mater Sci Forum, 2003; 419-422: 189
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[4] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[5] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[6] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[7] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[8] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[9] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[10] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[11] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[12] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[13] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[14] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[15] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.