Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 393-400    DOI: 10.3724/SP.J.1037.2011.00809
  论文 本期目录 | 过刊浏览 |
Zr-Sn-Nb新型锆合金板材加工过程中不均匀组织与织构演变
陈建伟1, 栾佰峰1, 柴林江1,  余泓冰1, 刘庆1,周军2, 李中奎2
1.重庆大学材料科学与工程学院, 重庆 400044
2.西北有色金属研究院, 西安 710016
HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF Zr-Sn-Nb  ZIRCONIUM ALLOY SHEETS
CHEN Jianwei1, LUAN Baifeng1, CHAI Linjiang1, YU Hongbing1, LIU Qing1,ZHOU Jun2, LI Zhongkui2
1.College of Materials Science and Engineering, Chongqing University, Chongqing 400044
2.Northwest Institute for Nonferrous Metal Research, Xi'an 710016
引用本文:

陈建伟, 栾佰峰, 柴林江, 余泓冰, 刘庆,周军, 李中奎. Zr-Sn-Nb新型锆合金板材加工过程中不均匀组织与织构演变[J]. 金属学报, 2012, 48(4): 393-400.
, , , , , , . HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF Zr-Sn-Nb  ZIRCONIUM ALLOY SHEETS[J]. Acta Metall Sin, 2012, 48(4): 393-400.

全文: PDF(1125 KB)  
摘要: 利用XRD, SEM-ECC, TEM和EBSD技术, 研究了Zr-Sn-Nb系新型锆合金板材加工过程的微观组织及织构演变. 结果表明, β相淬火得到的随机织构经热轧后形成沿横向倾斜的基面织构, 随后的加工过程均保留该织构;热轧及两次冷轧后的基面织构都为<1010>方向平行于轧向(<1010>//RD), 而退火后转变为<1210>方向平行于轧向(<1210>//RD).淬火形成的网状魏氏组织经热轧转变为不均匀形变组织, 两次冷轧使组织的不均匀性更显著, 最终退火得到完全再结晶组织; 轧制形成的难变形晶粒多为晶粒C轴平行于轧板法向(C//ND)的取向; 最终退火板材的大晶粒多为<1210>//RD的基面织构, 小晶粒则以<1010>//RD为主. 结合锆合金的变形及再结晶机制对轧制时产生的不均匀组织及再结晶过程的织构转变进行了分析.
关键词 Zr-Sn-Nb合金微观组织织构不均匀形变组织再结晶    
Abstract:Zirconium alloys are widely used as fuel cladding and structural materials for nuclear reactors due to the low neutron absorption cross-section, good corrosion resistance and acceptable mechanical properties. These properties are greatly dependent on microstructural and textural features, such as grain morphology, grain size, crystallographic texture and distribution of precipitates. It is necessary to understand microstructure and texture evolution during fabrication in order to optimize the manufacturing process and to improve the service performance. In this work, microstructure and texture evolution during fabrication of Zr-Sn-Nb new zirconium alloy sheets are investigated using XRD, SEM-ECC, TEM and EBSD. The results show that the random texture formed by β quenching transforms into tilt basal texture after hot rolling. The basal texture keeps stable during the following  fabrication stages. The texture of the rolling sheets is mainly characterized as <1010> direction parallel to rolling direction (<1010>//RD), while the texture of the annealing sheets is <1210> direction parallel to rolling direction (<1210>//RD). The microstructure evolves from a weave Widmansatten structure of β quenching stage to heterogeneous deformation structures associated with hot and cold rolling and then to a fully recrystallized structure after final annealing. The cold rolling sheets present more heterogeneous structures in which the C axes of less deformed grains mostly concentrate in the normal direction. The larger grains in annealed structures mostly belong to the <1210>//RD basal texture while the smaller grains are in the <1010>//RD orientation. The reason for the heterogeneous deformation structures and texture evolution during annealing are discussed according to the deformation and recrystallization mechanisms.
Key wordsZr-Sn-Nb alloy    microstructure    texture    heterogeneous deformation structure    recrystallization
收稿日期: 2011-12-28     
ZTFLH: 

TG146.4+14

 
基金资助:

国家自然科学基金项目51171213, 中央高校基本科研业务费专项资金项目CDJZR10130008和CDJXS10132201, 教育部新世纪优秀人才支持计划项目NCET-08-0606和重庆市百名杰出科技领军人才培养计划项目资助

作者简介: 陈建伟, 男, 1984年生, 博士生
[1] Srivastava D, Dey G K, Banerjee S.  Metall Mater Trans,1995; A26: 2707

[2] Bickel G A, Griffiths M.  J Nucl Mater, 2008; 383: 9

[3] Krishna K V M, Sahoo S K, Samajdar I, Neogy S, Tewari R,Srivastava D, Dey G K, Das G H, Saibaba N, Banarjee S.  J Nucl Mater,2008; 383: 78

[4] Vaibhaw K, Rao S V R, Jha S K, Saibaba N, Jayaraj R N. J Nucl Mater, 2008; 383: 71

[5] Kumar M K, Vanitha C, Samajdar I, Dey G K, Tewari R, Srivastava D,Banerjee S.  J Nucl Mater, 2004; 335: 48

[6] Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S. J Nucl Mater, 2008; 383: 153

[7] Li Z K, Zhou L, Zhang J J, Wang W S, Jin Z H.  Rare Met Mater Eng, 2004; 33: 1362

    (李中奎, 周廉, 张建军, 王文生, 金志浩. 稀有金属材料与工程, 2004; 33: 1362)

[8] Woo O T, Tangri K.  J Nucl Mater, 1979; 79: 82

[9] Jeong Y H, Rheem K S, Choi C S, Kim Y S.  J Nucl Sci Technol,1993; 30: 154

[10] Sahoo S K, Hiwarkar V D, Samajdar I, Dey G K, Srivastav D, Tiwari R,Banerjee S.  Scr Mater, 2007; 56: 963

[11] Kumar M K, Vanitha C, Samajdar I, Dey G K, Tewari R, Srivastava D,Banerjee S.  Mater Sci Technol, 2006; 22: 331

[12] Dewobroto N, Bozzolo N, Barberis P, Wagner F.  Mater Sci Forum,2004; 467-470: 453

[13] Zhu K Y, Chaubet D, Bacroix B, Brisset F.  Acta Mater,2005; 53: 5131

[14] Zhu K Y, Bacroix B, Chauveau T, Chaubet D, Castelnau O.  Metall Mater Trans, 2009; A40: 2423

[15] Bozzolo N, Dewobroto N, Grosdidier T, Barberis P, Wagner F. Mater Sci Forum, 2004; 467-470: 441

[16] Gerspach F, Bozzolo N, Wagner F.  Scr Mater, 2009; 60: 203

[17] Hiwarkar V D, Sahoo SK, Samajdar I, Satpathy A, Krishna K V M, Dey G K, Srivastav D, Tewari R, Banarjee S.  J Nucl Mater, 2011; 412: 287

[18] Guo X C, Luan B F, Chen J W, Zhou J, Zhang X Y, Li Z K, Liu Q. Rare Met Mater Eng, 2011; 40: 813

     (过锡川, 栾佰峰, 陈建伟, 周军, 张喜燕, 李中奎, 刘庆.稀有金属材料与工程, 2011; 40: 813)

[19] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H.  J Alloys Compd, 2009; 479: 423

[20] Kaschner G C, Gray G.  Metall Mater Trans, 2000; A31: 1997

[21] McCabe R J, Proust G, Cerreta E K, Misra A.  Int J Plast,2009; 25: 454

[22] Francillette H, Bacroix B, Gasperini M, Bechade J L.  Acta Mater,1998; 46: 4131

[23] Castelnau O, Francillette H, Bacroix B, Lebensohn R A. J Nucl Mater, 2001; 297: 14

[24] Akhtar A.  J Nucl Mater, 1973; 47: 79

[25] Biget M P, Saada G.  J Phys III France, 1995; 5: 1833

[26] Yoo M H, Morris J R, Ho K M, Agnew S R.  Metall Mater Trans,2002; A33: 813

[27] Akhtar A.  Metall Mater Trans, 1975; A6: 1217

[28] Humphreys F J, Ferry M G.  Acta Mater, 1996; 44: 2717

[29] Engler O, Hirsch J, Lucke K.  Acta Metall Mater,1995; 43: 121

[30] Higginson R L, Aindow M, Bate P S.  Mater Sci Eng,1997; A225: 9

[31] Benum S, Nes E.  Acta Mater, 1997; 45: 4593

[32] Ibe G, Lucke K. in: Margolin H ed.,  Recrystallization,Grain Growth and Textures, Ohio, Metals Park: ASM, 1966: 434

[33] Wagner F, Bozzolo N, Van Landuyt O, Grosdidier T.  Acta Mater,2002; 50: 1245
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[4] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[7] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[8] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[9] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[10] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[11] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[14] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[15] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.