Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1022-1025    DOI: 10.3724/SP.J.1037.2011.00152
  论文 本期目录 | 过刊浏览 |
无Si含P连续退火TRIP钢力学性能研究
定巍1,2,唐荻2,江海涛2,王宝峰1,3,龚志华 1
1. 内蒙古科技大学材料与冶金学院, 包头 014010
2. 北京科技大学高效轧制国家工程研究中心, 北京 100083
3. 内蒙古科技大学国际学院, 包头 014010
MECHANICAL PROPERTIES OF CONTINUOUSLY ANNEALLED Si–FREE P–CONTAINING TRIP STEEL
DING Wei 1,2, TANG Di 2, JIANG Haitao 2, WANG Baofeng 1,3, GONG Zhihua 1
1. School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010
2. National Engineering Research Center for Advanced Rolling Technology, University of Science & Technology, Beijing 100083
3. International School, Inner Mongolia University of Science and Technology, Baotou 014010
引用本文:

定巍 唐荻 江海涛 王宝峰 龚志华. 无Si含P连续退火TRIP钢力学性能研究[J]. 金属学报, 2011, 47(8): 1022-1025.
, , , , . MECHANICAL PROPERTIES OF CONTINUOUSLY ANNEALLED Si–FREE P–CONTAINING TRIP STEEL[J]. Acta Metall Sin, 2011, 47(8): 1022-1025.

全文: PDF(386 KB)  
摘要: 利用拉伸试验机和纳米力学探针对一种无Si含P连续退火TRIP钢的力学性能和铁素体微区力学性能进行了研究. 宏观拉伸实验结果表明,无Si含P系TRIP钢拥有良好的力学性能, 其屈服强度高达550-600 MPa,抗拉强度在740 MPa以上, 断后延伸率均在25%以上.利用纳米力学探针对铁素体微区力学性能进行测试的结果表明, 无Si含P系TRIP钢铁素体纳米硬度值比中Si系TRIP钢纳米硬度值高约0.6 GPa,由此引起的屈服强度差异约为75 MPa, 抗拉强度差异约为80 MPa.
关键词 无Si TRIP钢 力学性能    
Abstract:Since its advent, TRIP steel has been considered as the best automotive steel to improve the automotive safety dramatically because of its excellent mechanical properties. However, TRIP steel was not widely used and the main reason is that the large amount of Si in the steel led to surface quality problems of the plate. In this work a kind of C–Mn–Al–P TRIP steel with Si being replaced by Al and P was designed and subjected to continuous annealing. The macro and micro mechanical performance was analyzed. The results showed that the mechanical properties were excellent with tensile strength between 740 and 790 MPa and elongation above 25%, indicating that the production of TRIP steel without Si addition was feasible. Compared with traditional TRIP steel with Si, the designed steel demonstrated higher yield strength of 550—600 MPa, which was a little higher than that of high Si steel and much higher than that of medium or low Si steel. The micro hardness of ferrite was measured by nano mechanics probe and it was 0.6 GPa higher than that of medium Si TRIP steel. The IF steel whose strength was already known was used as a calibration and the conclusion was that the 0.6 GPa difference in nano hardness could result in 75 MPa difference in yield strength and 80 MPa division in tensile strength. Through further analysis, it was believed that the higher strength of ferrite was mainly caucsed by C, not P.
Key wordsnon–Si    TRIP steel    mechanical property
收稿日期: 2011-03-23     
基金资助:

国家自然科学基金资助项目50804005

作者简介: 定巍, 男, 回族, 1983年生, 博士
[1] Zackay F, Parker E R, Fahr D, Bush R. ASM Trans Quart, 1967; 60: 252

[2] Sakuma Y, Matsumura O, Takechi H. Metall Mater Trans, 1991; 22A: 489

[3] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 1992; 32: 1311

[4] Bhadeshia H K D H, Edmonds D V. Metall Mater Trans, 1979; 10A: 895

[5] Takahashi M , Bhadeshia H K D H. Mater Trans JIM, 1991; 32: 689

[6] Meyer M D, Vanderschueren D, de Cooman B C. ISIJ Int, 1999; 39: 813

[7] Jacques P J, Girault E, Mertens A, Verlinden B, Humbeeck J V, Delannay F. ISIJ Int, 2001; 41: 1068

[8] Suh D, Park S, Oh C, Kim S. Scr Mater, 2007; 57: 1097

[9] Srivastava A K, Bhattacharjee D, Jha G, Gope N, Singh S B. Mater Sci Eng, 2007; A445–446: 549

[10] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Mater Trans, 2002; 33A:2573

[11] Chen H C, Era H, Shimizu M. Metall Mater Trans, 1989; 20A: 437

[12] Jing C, Suh D, Oh C, Wang Z, Kim S. Met Mater Int, 2007; 13: 13

[13] Li L, De Cooman B C, Liu R, Vleugels J, Zhang M, Shi W. J Iron Steel Res Int, 2007; 14(6): 37

[14] Barb´e L, Verbeken K, Wettinck E. ISIJ Int, 2006; 46: 1251

[15] Zhou Y, Wu G H. Analysis Methods in Materials Science. Harbin: Harbin Institute Technology Press, 2007: 95

(周玉, 武高辉. 材料分析测试技术. 哈尔滨: 哈尔滨工业大学出版社, 2007: 95)

[16] Liu Q, Tang D, Jiang H T, Liu R D, Tang X Y. Int J Min Met Mater, 2009; 16: 399

[17] MaM T,Wu B R. Dual–Phase Steel–Physics and Mechanics Metallurgy, 2nd ed., Beijing: Metallurgical Industry Press, 2009: 1

(马鸣图, 吴宝榕. 双相钢---物理和力学冶金(第二版). 北京: 冶金工业出版社, 2009: 1)

[18] Ding W, Tang D, Jiang H T, Huang W. Acta Metall Sin, 2010; 46: 595

 (定巍, 唐荻, 江海涛, 黄伟. 金属学报, 2010; 46: 595)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.