Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1458-1472    DOI: 10.3724/SP.J.1037.2010.00446
  综述 本期目录 | 过刊浏览 |
镁合金塑性变形机理研究进展
刘庆
重庆大学材料科学与工程学院国家镁合金材料工程研究中心, 重庆 400030
RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS
LIU Qing
National Engineering Research Centre for Mg Alloys, School of Materials Science and Engineering, Chongqing University, Chongqing 400030
引用本文:

刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46(11): 1458-1472.
. RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS[J]. Acta Metall Sin, 2010, 46(11): 1458-1472.

全文: PDF(1882 KB)  
摘要: 简述了具有密排六方(hcp)结构镁合金材料各种可能的滑移和孪生系统及其临界切变应力; 以镁合金塑性变形机理为主线, 分别对单晶和多晶镁合金材料塑性变形行为及微观机理的影响规律, 轧制、挤压及不同严重塑性变形模式下镁合金织构的形成机理, 形变镁合金材料退火过程中回复与再结晶及镁合金材料在热变形过程中的动态再结晶机理, 以及沉淀硬化镁合金塑性变形机理、特别是沉淀相与位错滑移及孪生的交互作用机理等进行了总结与评述. 同时, 对高成形性镁合金及提高镁合金塑性成形能力的塑性变形机理进行了讨论.
关键词 镁合金塑性变形 机械孪生位错滑移织构各向异性再结晶    
Abstract:Possible slip and twinning systems and their critical resolved shear stresses of Mg alloys with hcp structure were described. Research works on plastic deformation behavior and micro-mechanism of different kinds of Mg alloys were reviewed. Both microstructure and texture evolutions during different thermomechanical processes, both dynamic and static recrystallization mechanisms of Mg alloys were described and discussed. Deformation and strengthening mechanisms of precipitates hardening Mg alloys were also addressed with emphasis on the interaction between precipitates and twinning/slip.
Key wordsMg alloy    plastic deformation    mechanical twinning    dislocation slip    texture    anisotropy    recrystallization
收稿日期: 2010-09-06     
基金资助:

国家重点基础研究发展计划项目2007CB613700和国家自然科学基金重大国际合作项目50620130096及自然科学基金重点项目50231030资助

作者简介: 刘庆, 男, 1964年生, 教授
[1] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [2] Obara T, Yoshinga H, Morozumi S. Acta Metall, 1973; 21: 845 [3] Stohr J F, Poirier J P. Philos Mag, 1972; 25: 1313 [4] Yoo M H, Agnew S R, Morris J R, Ho K M. Mater Sci Eng, 2001; A319–321: 87 [5] Styczynski A, Hartig C, Bohlen J, Letzig D. Scr Mater, 2004; 50: 943 [6] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277 [7] Agnew S R, Tom C N, Brown D W, Holden T M, Vogel S C. Scr Mater, 2003; 48: 1003 [8] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1 [9] Yoo M. Metall Mater Trans, 1981; 12A: 409 [10] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881 [11] Chen Y J, Wang Q D, Roven H J, Liu M P, Karlsen M, Yu Y D, Hjelen J. Scr Mater, 2008; 58: 311 [12] Jiang J, Godfrey A, Liu W, Liu Q. Scr Mater, 2008; 58: 122 [13] Jiang J, Godfrey A, Liu Q. Key Eng Mater, 2007; 353–358: 627 [14] Yang P, Yu Y, Chen L, Mao W. Scr Mater, 2004; 50: 1163 [15] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5 [16] Kelly E W, Hosford W F. Trans Metall Soc AIME, 1968; 242: 5 [17] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 728 [18] Wonsiewicz B C, Backofen W A. Metall Soc AIME, 1967; 239: 1422 [19] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Acta Mater, 2006; 54: 549 [20] Kleiner S, Uggowitzer P J. Mater Sci Eng, 2004; A379: 258 [21] Jiang J, Godfrey A, Liu Q. Mater Sci Technol, 2005; 21: 1417 [22] Choi S H, Shin E J, Seong B S. Acta Mater, 2007; 55: 4181 [23] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A488: 406 [24] Yin D L, Wang J T, Liu J Q, Zhao X. J Alloys Compd, 2009; 478: 789 [25] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576 [26] Yan H, Chen R S, Han E H. Mater Sci Eng, 2010; A527: 3317 [27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Scr Mater, 2006; 54: 771 [28] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899 [29] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093 [30] Jain A, Agnew S R. Mater Sci Eng, 2007; A462: 29 [31] Al–Samman T, Li X, Chowdhury S G. Mater Sci Eng, 2010; A527: 3450 [32] Prasad Y V R K, Rao K P. Mater Sci Eng, 2008; A487: 316 [33] Tucker MT, HorstemeyerMF, Gullett PM, El Kadiri H, Whittington W R. Scr Mater, 2009; 60: 182 [34] Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Law P K. Acta Mater, 2008; 56: 688 [35] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [36] Zeng R C, Han E H, KeW, Dietzel W, Kainer K U, Atrens A. Int J Fatigue, 2010; 32: 411 [37] Barnett M R. Mater Sci Eng, 2007; A464: 1 [38] Barnett M R, Jacob S, Gerard B F, Mullins J G. Scr Mater, 2008; 59: 1035 [39] Walde T, Riedel H. Mater Sci Eng, 2007; A443: 277 [40] Perez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661 [41] del Valle J A, Perez–Prado M T, Ruano O A. Mater Sci Eng, 2003; A355: 68 [42] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. J Alloys Compd, 2009; 475: 126 [43] Chang L L, Shang E F, Wang Y N, Zhao X, Qi M. Mater Charact, 2009; 60: 487 [44] Koh H, Sakai T, Utsunomiya H, Minamiguchi S. Mater Trans, 2007; 48: 2023 [45] Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T. J Mater Sci, 2008; 43: 7148 [46] Utsunomiya H, Sakai T, Minamiguchi S, Koh H. High–Speed Heavy Rolling of Magnesium Alloy Sheets, Minerals. Warrendale: Metals & Materials Soc, 2006: 201 [47] Watanabe Y, Sakai T, Utsunomiya H. J Iron Steel Res Int, 2008; 15: 712 [48] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755 [49] Kim W J, Lee J B, Kim W Y, Jeong H T, Jeong H G. Scr Mater, 2007; 56: 309 [50] Kim W J, Jeong H G, Jeong H T. Scr Mater, 2009; 61: 1040 [51] Huang X, Suzuki K, Watazu A, Shigematsu I, Saito N. Scr Mater, 2009; 60: 964 [52] Chino Y, Sassa K, Kamiya A, Mabuchi M. In: 5th Int Conf Processing and Manufacturing of Advanced Materials. Vancouver, Canada: Trans Tech Publications Ltd, 2007: 1615 [53] Chen X P, Shang D, Xiao R, Huang G J, Liu Q. Trans Nonferr Metal Soc, 2010; 20: 589 [54] Lim H K, Lee J Y, Kim D H, Kim W T, Lee J S, Kim D H. Mater Sci Eng, 2009; A506: 63 [55] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141 [56] Chang L L, Wang Y N, Zhao X, Huang J C. Mater Sci Eng, 2008; A496: 512 [57] Liang S J, Liu Z Y, Wang E D. Mater Lett, 2008; 62: 4009 [58] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562 [59] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31 [60] Stanford N, Barnett M R. Mater Sci Eng, 2008; A496: 399 [61] Park S S, You B S, Yoon D J. J Mater Process Technol, 2009; 209: 5940 [62] Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N. Mater Sci Eng, 2006; A434: 131 [63] Azeem M A, Tewari A, Mishra S, Gollapudi S, Ramamurty U. Acta Mater, 2010; 58: 1495 [64] Bohlen J, Yi S B, Swiostek J, Letzig D, Brokmeier H G, Kainer K U. Scr Mater, 2005; 53: 259 [65] Mabuchi M, Iwasaki H, Yanase K, Higashi K. Scr Mater, 1997; 36: 681 [66] Mabuchi M, Ameyama K, Iwasaki H, Higashi K. Acta Mater, 1999; 47: 2047 [67] Mukai T, Yamanoi M,Watanabe H, Higashi K. Scr Mater, 2001; 45: 89 [68] Kim W J, An C W, Kim Y S, Hong S I. Scr Mater, 2002; 47: 39 [69] KimW J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Acta Mater, 2003; 51: 3293 [70] Perez–Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 51: 1093 [71] Perez–Prado M T, del Valle J A, Ruano O A. Mater Lett, 2005; 59: 3299 [72] del Valle J A, P´erez–Prado M T, Ruano O A. Mater Sci Eng, 2005; A410–411: 353 [73] Tan J C, Tan M J. Mater Sci Eng, 2003; A339: 124 [74] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Beladi H. Mater Sci Eng, 2007; A456: 52 [75] Sitdikov O, Kaibyshev R. Mater Trans, 2001; 42: 1928 [76] Jin Q L, Shim S Y, Lim S G. Scr Mater, 2006; 55: 843 [77] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411 [78] Xu S W, Kamado S, Honma T. Scr Mater, 2010; 63: 293 [79] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473 [80] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199 [81] Zhang Y, Zeng X, Lu C, Ding W. Mater Sci Eng, 2006; A428: 91 [82] Barnett M R. J Light Met, 2001; 1: 167 [83] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferr Met Soc, 2009; 19: 55 [84] Xin R L, Wang B S, Chen X P, Huang G J, Liu Q. Sci China, 2009; 52E: 176 [85] Wang Q, Li D, Blandin J J, Su´ery M, Donnadieu P, Ding W. Mater Sci Eng, 2009; A516: 189 [86] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160 [87] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20 [88] Perez–Prado M T, Ruano O A. Scr Mater, 2002; 46: 149 [89] Perez–Prado M T, Ruano O A. Scr Mater, 2003; 48: 59 [90] Yang X Y, Zhu Y K, Miura H, Sakai T. Trans Nonferr Met Soc, 2010; 20: 1269 [91] Nie J F. Scr Mater, 2003; 48: 1009 [92] Hutchinson C, Nie J, Gorsse S. Metall Mater Trans, 2005; 36A: 2093 [93] Zhang M X, Kelly P M. Scr Mater, 2003; 48: 379 [94] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2004; A386: 447 [95] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725 [96] Ball E A, Prangnell P B. Scr Metall Mater, 1994; 31: 111 [97] Mackenzie L W F, Davis B, Humphreys F J, Lorimer G W. Mater Sci Technol, 2007; 23: 1173 [98] Senn J W, Agnew S R. Magnesium Technology 2008. New Orleans: TMS, 2008: 153 [99] Senn J W, Agnew S R. Proc Magnesium Technology in the Global Age. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2006: 115 [100] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665 [101] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[7] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[8] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[11] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[12] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[13] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[14] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[15] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.