Please wait a minute...
金属学报  2010, Vol. 46 Issue (11): 1458-1472    DOI: 10.3724/SP.J.1037.2010.00446
  综述 本期目录 | 过刊浏览 |
镁合金塑性变形机理研究进展
刘庆
重庆大学材料科学与工程学院国家镁合金材料工程研究中心, 重庆 400030
RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS
LIU Qing
National Engineering Research Centre for Mg Alloys, School of Materials Science and Engineering, Chongqing University, Chongqing 400030
全文: PDF(1882 KB)  
摘要: 简述了具有密排六方(hcp)结构镁合金材料各种可能的滑移和孪生系统及其临界切变应力; 以镁合金塑性变形机理为主线, 分别对单晶和多晶镁合金材料塑性变形行为及微观机理的影响规律, 轧制、挤压及不同严重塑性变形模式下镁合金织构的形成机理, 形变镁合金材料退火过程中回复与再结晶及镁合金材料在热变形过程中的动态再结晶机理, 以及沉淀硬化镁合金塑性变形机理、特别是沉淀相与位错滑移及孪生的交互作用机理等进行了总结与评述. 同时, 对高成形性镁合金及提高镁合金塑性成形能力的塑性变形机理进行了讨论.
关键词 镁合金塑性变形 机械孪生位错滑移织构各向异性再结晶    
Abstract:Possible slip and twinning systems and their critical resolved shear stresses of Mg alloys with hcp structure were described. Research works on plastic deformation behavior and micro-mechanism of different kinds of Mg alloys were reviewed. Both microstructure and texture evolutions during different thermomechanical processes, both dynamic and static recrystallization mechanisms of Mg alloys were described and discussed. Deformation and strengthening mechanisms of precipitates hardening Mg alloys were also addressed with emphasis on the interaction between precipitates and twinning/slip.
Key wordsMg alloy    plastic deformation    mechanical twinning    dislocation slip    texture    anisotropy    recrystallization
收稿日期: 2010-09-06     
基金资助:

国家重点基础研究发展计划项目2007CB613700和国家自然科学基金重大国际合作项目50620130096及自然科学基金重点项目50231030资助

通讯作者: 刘庆     E-mail: qingliu@cqu.edu.cn
Corresponding author: LIU Qing     E-mail: qingliu@cqu.edu.cn
作者简介: 刘庆, 男, 1964年生, 教授

引用本文:

刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46(11): 1458-1472.
LIU Qiang. RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS. Acta Metall Sin, 2010, 46(11): 1458-1472.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2010.00446      或      https://www.ams.org.cn/CN/Y2010/V46/I11/1458

[1] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [2] Obara T, Yoshinga H, Morozumi S. Acta Metall, 1973; 21: 845 [3] Stohr J F, Poirier J P. Philos Mag, 1972; 25: 1313 [4] Yoo M H, Agnew S R, Morris J R, Ho K M. Mater Sci Eng, 2001; A319–321: 87 [5] Styczynski A, Hartig C, Bohlen J, Letzig D. Scr Mater, 2004; 50: 943 [6] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277 [7] Agnew S R, Tom C N, Brown D W, Holden T M, Vogel S C. Scr Mater, 2003; 48: 1003 [8] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1 [9] Yoo M. Metall Mater Trans, 1981; 12A: 409 [10] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881 [11] Chen Y J, Wang Q D, Roven H J, Liu M P, Karlsen M, Yu Y D, Hjelen J. Scr Mater, 2008; 58: 311 [12] Jiang J, Godfrey A, Liu W, Liu Q. Scr Mater, 2008; 58: 122 [13] Jiang J, Godfrey A, Liu Q. Key Eng Mater, 2007; 353–358: 627 [14] Yang P, Yu Y, Chen L, Mao W. Scr Mater, 2004; 50: 1163 [15] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5 [16] Kelly E W, Hosford W F. Trans Metall Soc AIME, 1968; 242: 5 [17] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 728 [18] Wonsiewicz B C, Backofen W A. Metall Soc AIME, 1967; 239: 1422 [19] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Acta Mater, 2006; 54: 549 [20] Kleiner S, Uggowitzer P J. Mater Sci Eng, 2004; A379: 258 [21] Jiang J, Godfrey A, Liu Q. Mater Sci Technol, 2005; 21: 1417 [22] Choi S H, Shin E J, Seong B S. Acta Mater, 2007; 55: 4181 [23] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A488: 406 [24] Yin D L, Wang J T, Liu J Q, Zhao X. J Alloys Compd, 2009; 478: 789 [25] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576 [26] Yan H, Chen R S, Han E H. Mater Sci Eng, 2010; A527: 3317 [27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Scr Mater, 2006; 54: 771 [28] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899 [29] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093 [30] Jain A, Agnew S R. Mater Sci Eng, 2007; A462: 29 [31] Al–Samman T, Li X, Chowdhury S G. Mater Sci Eng, 2010; A527: 3450 [32] Prasad Y V R K, Rao K P. Mater Sci Eng, 2008; A487: 316 [33] Tucker MT, HorstemeyerMF, Gullett PM, El Kadiri H, Whittington W R. Scr Mater, 2009; 60: 182 [34] Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Law P K. Acta Mater, 2008; 56: 688 [35] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [36] Zeng R C, Han E H, KeW, Dietzel W, Kainer K U, Atrens A. Int J Fatigue, 2010; 32: 411 [37] Barnett M R. Mater Sci Eng, 2007; A464: 1 [38] Barnett M R, Jacob S, Gerard B F, Mullins J G. Scr Mater, 2008; 59: 1035 [39] Walde T, Riedel H. Mater Sci Eng, 2007; A443: 277 [40] Perez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661 [41] del Valle J A, Perez–Prado M T, Ruano O A. Mater Sci Eng, 2003; A355: 68 [42] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. J Alloys Compd, 2009; 475: 126 [43] Chang L L, Shang E F, Wang Y N, Zhao X, Qi M. Mater Charact, 2009; 60: 487 [44] Koh H, Sakai T, Utsunomiya H, Minamiguchi S. Mater Trans, 2007; 48: 2023 [45] Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T. J Mater Sci, 2008; 43: 7148 [46] Utsunomiya H, Sakai T, Minamiguchi S, Koh H. High–Speed Heavy Rolling of Magnesium Alloy Sheets, Minerals. Warrendale: Metals & Materials Soc, 2006: 201 [47] Watanabe Y, Sakai T, Utsunomiya H. J Iron Steel Res Int, 2008; 15: 712 [48] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755 [49] Kim W J, Lee J B, Kim W Y, Jeong H T, Jeong H G. Scr Mater, 2007; 56: 309 [50] Kim W J, Jeong H G, Jeong H T. Scr Mater, 2009; 61: 1040 [51] Huang X, Suzuki K, Watazu A, Shigematsu I, Saito N. Scr Mater, 2009; 60: 964 [52] Chino Y, Sassa K, Kamiya A, Mabuchi M. In: 5th Int Conf Processing and Manufacturing of Advanced Materials. Vancouver, Canada: Trans Tech Publications Ltd, 2007: 1615 [53] Chen X P, Shang D, Xiao R, Huang G J, Liu Q. Trans Nonferr Metal Soc, 2010; 20: 589 [54] Lim H K, Lee J Y, Kim D H, Kim W T, Lee J S, Kim D H. Mater Sci Eng, 2009; A506: 63 [55] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141 [56] Chang L L, Wang Y N, Zhao X, Huang J C. Mater Sci Eng, 2008; A496: 512 [57] Liang S J, Liu Z Y, Wang E D. Mater Lett, 2008; 62: 4009 [58] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562 [59] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31 [60] Stanford N, Barnett M R. Mater Sci Eng, 2008; A496: 399 [61] Park S S, You B S, Yoon D J. J Mater Process Technol, 2009; 209: 5940 [62] Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N. Mater Sci Eng, 2006; A434: 131 [63] Azeem M A, Tewari A, Mishra S, Gollapudi S, Ramamurty U. Acta Mater, 2010; 58: 1495 [64] Bohlen J, Yi S B, Swiostek J, Letzig D, Brokmeier H G, Kainer K U. Scr Mater, 2005; 53: 259 [65] Mabuchi M, Iwasaki H, Yanase K, Higashi K. Scr Mater, 1997; 36: 681 [66] Mabuchi M, Ameyama K, Iwasaki H, Higashi K. Acta Mater, 1999; 47: 2047 [67] Mukai T, Yamanoi M,Watanabe H, Higashi K. Scr Mater, 2001; 45: 89 [68] Kim W J, An C W, Kim Y S, Hong S I. Scr Mater, 2002; 47: 39 [69] KimW J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Acta Mater, 2003; 51: 3293 [70] Perez–Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 51: 1093 [71] Perez–Prado M T, del Valle J A, Ruano O A. Mater Lett, 2005; 59: 3299 [72] del Valle J A, P´erez–Prado M T, Ruano O A. Mater Sci Eng, 2005; A410–411: 353 [73] Tan J C, Tan M J. Mater Sci Eng, 2003; A339: 124 [74] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Beladi H. Mater Sci Eng, 2007; A456: 52 [75] Sitdikov O, Kaibyshev R. Mater Trans, 2001; 42: 1928 [76] Jin Q L, Shim S Y, Lim S G. Scr Mater, 2006; 55: 843 [77] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411 [78] Xu S W, Kamado S, Honma T. Scr Mater, 2010; 63: 293 [79] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473 [80] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199 [81] Zhang Y, Zeng X, Lu C, Ding W. Mater Sci Eng, 2006; A428: 91 [82] Barnett M R. J Light Met, 2001; 1: 167 [83] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferr Met Soc, 2009; 19: 55 [84] Xin R L, Wang B S, Chen X P, Huang G J, Liu Q. Sci China, 2009; 52E: 176 [85] Wang Q, Li D, Blandin J J, Su´ery M, Donnadieu P, Ding W. Mater Sci Eng, 2009; A516: 189 [86] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160 [87] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20 [88] Perez–Prado M T, Ruano O A. Scr Mater, 2002; 46: 149 [89] Perez–Prado M T, Ruano O A. Scr Mater, 2003; 48: 59 [90] Yang X Y, Zhu Y K, Miura H, Sakai T. Trans Nonferr Met Soc, 2010; 20: 1269 [91] Nie J F. Scr Mater, 2003; 48: 1009 [92] Hutchinson C, Nie J, Gorsse S. Metall Mater Trans, 2005; 36A: 2093 [93] Zhang M X, Kelly P M. Scr Mater, 2003; 48: 379 [94] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2004; A386: 447 [95] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725 [96] Ball E A, Prangnell P B. Scr Metall Mater, 1994; 31: 111 [97] Mackenzie L W F, Davis B, Humphreys F J, Lorimer G W. Mater Sci Technol, 2007; 23: 1173 [98] Senn J W, Agnew S R. Magnesium Technology 2008. New Orleans: TMS, 2008: 153 [99] Senn J W, Agnew S R. Proc Magnesium Technology in the Global Age. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2006: 115 [100] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665 [101] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[3] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[4] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[5] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[6] 曹育菡,王理林,吴庆峰,何峰,张忠明,王志军. CoCrFeNiMo0.2高熵合金的不完全再结晶组织与力学性能[J]. 金属学报, 2020, 56(3): 333-339.
[7] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[8] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[9] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[10] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[11] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[12] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[13] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[14] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[15] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.