Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 907-912    DOI: 10.3724/SP.J.1037.2010.00130
  论文 本期目录 | 过刊浏览 |
DZ417G镍基定向凝固高温合金的再结晶
彭胜,周兰章,侯介山,郭建亭
中国科学院金属研究所, 沈阳 110016
THE RECRYSTALLIZATION OF Ni BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G
PENG Sheng, ZHOU Lanzhang, HOU Jieshan, GUO Jianting
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

彭胜 周兰章 侯介山 郭建亭. DZ417G镍基定向凝固高温合金的再结晶[J]. 金属学报, 2010, 46(8): 907-912.
, , . THE RECRYSTALLIZATION OF Ni BASE DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G[J]. Acta Metall Sin, 2010, 46(8): 907-912.

全文: PDF(2442 KB)  
摘要: 

研究了喷砂和机加工后DZ417G合金在热处理过程中的组织演化及其对拉伸、持久性能的影响. 结果表明: 喷砂和机加工后, DZ417G合金样品热处理后表面发生了再结晶. 扫描电镜观察发现固溶处理样品中的再结晶晶粒呈等轴晶晶粒, 而在时效处理后再结晶晶粒呈胞状形式生长. 表层再结晶使室温拉伸强度有一定程度的降低, 对高温拉伸强度影响不大. 表面再结晶厚度在持久过程中增加. 表层等轴晶再结晶组织使持久性能降低, 二次胞状再结晶组织将导致持久性能的进一步降低.

关键词 定向凝固高温合金 DZ417G 再结晶 力学性能    
Abstract

DZ417G is a directionally solidified (DS) superalloy developed for low–pressure blade applications in gas turbine engines. The crystallization microstructures of DZ417G samples caused by sand–blasting and machining were investigated. The tensile properties of the alloy after crystallization were tested at room temperature and 900 ℃and its stress–rupture performance was examined under conditions of 980 ℃/216 MPa and 760 ℃/725 MPa. The results show that after solution treatment equiaxed recrystallization grains form on the surface of specimens machined from directionally solidified alloy bars. After aging treatment, cellular recrystallization takes place on the surface of specimens pretreated by sand blasting. Both the yield strength and tensile strength at room temperature decrease after recrystallization, while those at 900 ℃ are slightly affected by recrystallization. The recrystallization depth increases after stress–rupture tests, which may be attributed to migration of recrystallization boundaries driven by high temperature and stress. For samples without recrystallization microstructure, the fracture mode is transgranular, which is controlled by the propagation rate of the cracks initiated both on surface and at inner microstructure discontinuities. While for samples with recrystallization microstructure, the cracks prefer to be initiated on transverse recrystallization grain boundaries and propagate along the recrystallization boundaries into the matrix, which may accelerate the propagation rate. TRF (transverse recrystallization area fraction) is a factor to evaluate the effect of recrystallization on the stress–ruptured performance. The stress–ruptured performance is decreased with the increase of TRF between 0 and 0.5. For samples with a TRF of 0.5, second cellular recrystallization forms in the first equiaxed recrystallization grain. The cracks initated at interfaces of
cellular microstructure have a high density, which impair the stress–ruptured performance of DZ417G alloy.

Key wordsdirectionally solidified superalloy    DZ417G    recrystallization    mechanical property
收稿日期: 2010-03-15     
作者简介: 彭胜, 男, 1984生, 硕士生

[1] Wang D L, Li J B, Jin T, Yang S Q, Wei Z, Hu Z Q, Fu L Q. Acta Metall Sin, 2006; 42: 167
(王东林, 李家宝, 金涛, 杨胜群, 魏政, 胡壮麒, 付立群. 金属学报, 2006; 42: 167)
[2] Xie G, Wang L, Zhang J, Lou L H. Metall Mater Trans, 2008; 39A: 206
[3] Marsden P K. J Mater Sci, 1971; 6: 1038
[4] Wang L, Xie G, Zhang J, Lou L H. Scr Mater, 2006; 55: 457
[5] Porter A, Ralph B. J Mater Sci, 1981; 16: 707
[6] Bond S D, Martin J W. J Mater Sci, 1984; 19: 3867
[7] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1665
[8] Cox D C, Roebuck B, Rae C M F, Reed R C. Mater Sci Technol, 2003; 19: 440
[9] Zambaldi C, Roters F, Raabe D, Glatzel U. Mater Sci Eng, 2007; A454–455: 433
[10] Zhao Y,Wang L, Yu T, Ding H F. Rare Metall Mater Eng, 2008; 37: 1032
[11] Xiong J C, Li J R, Zhao J Q, Liu S Z, Dong J X. Acta Metall Sin, 2009; 45: 1232
(熊继春, 李嘉荣, 赵金乾, 刘世忠, 董建新. 金属学报, 2009; 45: 1232)
[12] Zhang B, Tao C H, Lu X, Liu C K, Hu C Y, Bai M Y. J Iron Steel Res Int, 2009; 16: 75
[13] Xie G, Zhang J, Lou L H. Scr Mater, 2008; 59: 858
[14] B¨urgel R, Portella P D, Preuhs J. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J, eds., Superalloys 2000, Seven Spring, PA: TMS, 2000: 229
[15] Gostic W J. US Pat, 5551999, 1996
[16] Mihalisin J R, Corrigan J, Gratti G M, Vogt R G. US Pat, 2002/0007877 A1, 2002
[17] Keiichi M. Euro Pat, 1036850 A1, 2000
[18] Zoltzer K, Lempenauer K, Fischmeister H. US Pat, 5294239, 1994
[19] Corrigan J, Vogt R G, Mihalisin J R, Schmiedeknecht D L. Euro Pat, 1038982 A1, 1999
[20] Salkeld R W, Field T T, Ault E A. US Pat, 5413648, 1995
[21] Okazaki M, Ohtera I, Harada Y. Metall Mater Trans, 2004; 35A: 535
[22] Zhang W F , Li Y J, Liu G Y, Zhao A G, Tao C H, Tian J F, Yao G. Eng Fail Anal, 2000; 11: 429
[23] Zhao Y, Wang L, Li H Y, Yu T, Liu Y. Rare Met, 2008; 27: 425
[24] Jo C Y, Cho H Y, Kim H M. Mater Sci Technol, 2003; 19: 1671
[25] Li Y J, Zhang W F, Tao C H. J Mech Strength, 2006; 28: 135
(李运菊, 张卫方, 陶春虎. 机械强度, 2006; 28: 135)
[26] Li Y J, Tao C H, Zhang W F. Adv Eng Mater, 2007; 9: 867
[27] Xie G, Wang L, Zhang J, Lou L H. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Seven Spring, PA: TMS, 2008: 453
[28] Paul U, Sahm P R. Mater Sci Eng, 1993; A173: 49
[29] Guo J T, Yuan C, Yang H C, Lupinc V, Maldini M. Metall Mater Trans, 2001; 32A: 1103

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[10] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.