Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 133-147    DOI: 10.11900/0412.1961.2025.00198
  研究论文 本期目录 | 过刊浏览 |
超声振动对镁/铝异质合金搅拌摩擦搭接焊接头界面组织演变的影响
阴嘉琳, 石磊, 武传松()
山东大学 材料液固结构演变与加工教育部重点实验室 济南 250061
Effect of Ultrasonic Vibration on Microstructure Evolution at the Mg/Al Dissimilar Alloy Friction Stir Welded Lap Joint Interface
YIN Jialin, SHI Lei, WU Chuansong()
Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing, Ministry of Education, Shandong University, Jinan 250061, China
引用本文:

阴嘉琳, 石磊, 武传松. 超声振动对镁/铝异质合金搅拌摩擦搭接焊接头界面组织演变的影响[J]. 金属学报, 2026, 62(1): 133-147.
Jialin YIN, Lei SHI, Chuansong WU. Effect of Ultrasonic Vibration on Microstructure Evolution at the Mg/Al Dissimilar Alloy Friction Stir Welded Lap Joint Interface[J]. Acta Metall Sin, 2026, 62(1): 133-147.

全文: PDF(7805 KB)   HTML
摘要: 

镁/铝薄板搭接型式的搅拌摩擦焊接对于实现交通运载器具的结构轻量化有重要意义。本工作开展了镁合金与铝合金板超声振动强化搅拌摩擦搭接焊实验,并确定最优工艺参数为转速800 r/min、焊速90 mm/min,在焊接过程中对搭接接头匙孔区域采取急停+冷冻处理。对焊接后匙孔周围不同角度的垂直截面和匙孔水平截面的材料流动行为,以及镁合金侧匙孔周围水平截面的特征区域和过匙孔中心焊缝中心线上的各特征区域显微组织进行表征,并阐明了超声振动对搭接接头力学性能的影响。结果表明,搅拌摩擦搭接焊过程中通过引入超声振动,提高了镁/铝搭接接头的拉伸剪切强度以及有效板厚。此外,超声振动使得搅拌头驱动材料的体积增加,增强了材料的流动混合程度;在接头成形过程中,镁合金侧匙孔周围各区域晶粒尺寸分布更加均匀,且搅拌头后方晶粒的再结晶程度显著提高。

关键词 镁合金铝合金搭接接头搅拌摩擦搭接焊超声振动微观组织演变    
Abstract

With growing emphasis on energy saving and emission reduction, lightweight structures have become a key development focus in vehicle manufacturing. Mg and Al alloys, as lightweight materials with excellent properties, have broad applications in aerospace, automobile manufacturing, 3C products, and other fields. Mg/Al composite components can fully leverage the advantages of both alloys. Therefore, achieving high-quality and high-efficiency joints of Mg/Al dissimilar alloys has become a critical challenge in the manufacturing industry. Among the important structural types of Mg/Al thin-plate dissimilar welded joints, lap joints have attracted considerable attention. Friction stir welding (FSW), a solid-state joining process, offers distinct advantages for producing high-quality, defect-free Mg/Al joints. Ultrasonic-assisted FSW can further broaden the process window and enhance joint strength. However, the mechanism by which ultrasound influences joint formation during welding remains unclear. In this study, ultrasonic vibration enhanced friction stir lap welding experiments were conducted on Mg alloy and Al alloy sheets. The optimal process parameters were determined to be a rotation speed of 800 r/min and a welding speed of 90 mm/min. During welding, the keyhole region of the lap joint was subjected to a sudden stop + freezing treatment. Material flow behavior was characterized on vertical cross-sections at various angles around the keyhole and on horizontal cross-sections. Microstructures of the characteristic regions on the horizontal cross-section around the keyhole and along the weld centerline passing through keyhole center near the Mg alloy side were characterized. The influence of ultrasonic vibration on the mechanical properties of the lap joints was also evaluated. The results show that introducing ultrasonic vibration during friction stir lap welding enhanced both the tensile shear strength and the effective sheet thickness of the Mg/Al lap joints. Furthermore, ultrasonic vibration increased the volume of material driven by the tool, promoting enhanced material flow and mixing. During joint formation, the grain size distribution around the keyhole on the Mg alloy side became more uniform, and the grains behind the tool underwent a significantly higher degree of recrystallization.

Key wordsMg alloy    Al alloy    lap joint    friction stir lap welding    ultrasonic vibration    microstructure evolution
收稿日期: 2025-07-08     
ZTFLH:  TG456.9  
基金资助:国家自然科学基金项目(52035005)
通讯作者: 武传松,wucs@sdu.edu.cn,主要从事焊接物理、焊接工艺过程数值模拟与测试控制的研究
作者简介: 阴嘉琳,男,1998年生,硕士生
AlloySiFeCuMnZnCrAlMg
AZ31B-H24 Mg0.00640.00650.00010.0030.680-2.68Bal.
6061-T6 Al0.64900.60000.21500.1320.2450.095Bal.1.02
表1  母材化学成分 (mass fraction / %)
图1  超声振动强化搅拌摩擦搭接焊(UVeFSLW)系统示意图
图2  搭接型式以及超声头与搅拌头相对位姿示意图
图3  搭接接头处样品的取样位置和尺寸示意图
图4  焊缝匙孔样品切取示意图
图5  镁合金侧水平截面上匙孔附近表征区域的选取
图6  搅拌摩擦搭接焊(FSLW)和UVeFSLW工艺制备搭接接头垂直截面的OM像
图7  不同参数和工艺下搭接接头的有效板厚(dEST)
图8  工艺窗口内搭接接头的拉伸剪切强度
图9  围绕匙孔中心不同角度样品垂直截面的OM像
图10  匙孔水平截面镁合金和铝合金基体侧材料流动的OM像
图11  FSLW接头镁合金侧水平截面特征区域的反极图(IPFs)
图12  UVeFSLW接头镁合金侧截面特征区域的IPF图
图13  区域A~H晶粒尺寸、小角度晶占比及再结晶程度统计
图14  FSLW接头镁合金侧水平截面过匙孔中心焊接路径上特征区域的IPFs
图15  UVeFSLW接头镁合金侧水平截面过匙孔中心焊接路径上特征区域的IPFs
图16  各区域晶粒尺寸、小角度晶界占比及再结晶程度统计
图17  超声能量对铝合金流动应力的影响[27]
图18  材料流动应力的计算结果[29]
[1] Zhang W, Xu J. Advanced lightweight materials for Automobiles: A review [J]. Mater. Des., 2022, 221: 110994
[2] Lyu R, Jiang X, Minoru O, et al. Lightweight design of automobile frame based on magnesium alloy [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 372: 012047
[3] Ahmed M M Z, El-Sayed Seleman M M, Fydrych D, et al. Friction stir welding of aluminum in the aerospace industry: The current progress and state-of-the-art review [J]. Materials, 2023, 16: 2971
[4] Pantelakis S G, Alexopoulos N D, Chamos A N. Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications [J]. J. Eng. Mater. Technol., 2007, 129: 422
[5] Liu J Z, Zhao Y H, Song L, et al. Study on the AZ31B magnesium alloy in the application on high-speed trains [J]. Adv. Mater. Res., 2012, 535-537: 875
[6] Song L, Zhao Y H, Liu J Z, et al. Study on the ZK60A and AZ31B magnesium-alloy in the application on high-speed train seats [J]. Adv. Mater. Res., 2013, 690-693: 53
[7] Yan Y, Zhang D T, Qiu C, et al. Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S619
[8] Firouzdor V, Kou S. Al-to-Mg friction stir welding: Effect of positions of Al and Mg with respect to the welding tool [J]. Weld. J., 2009, 88: 213S
[9] Lv X Z, Liu L M, Song G. Laser welding of AZ31Mg alloy with 6061Al alloy via Ti interlayer based on two kinds of bonding mechanisms [J]. J. Manuf. Process., 2022, 83: 678
[10] Xu Y, Ke L M, Nie H, et al. Precipitation behavior of intermetallic compounds at the interface of thick plate friction stir welded Al Alloy/Mg alloy joints under local strong cooling [J]. Acta Metall. Sin., 2024, 60: 777
[10] 徐 洋, 柯黎明, 聂 浩 等. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为 [J]. 金属学报, 2024, 60: 777
[11] Singh V P, Patel S K, Ranjan A, et al. Recent research progress in solid state friction-stir welding of aluminium-magnesium alloys: A critical review [J]. J. Mater. Res. Technol., 2020, 9: 6217
[12] Zhai M, Wu C S, Shi L. Influence of tool pin length and dissimilar material configuration on friction stir lap welding of Al and Mg alloys [J]. Int. J. Adv. Manuf. Technol., 2022, 122: 1567
[13] Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution [J]. Prog. Mater. Sci., 2021, 117: 100752
[14] Wen T, Wei L, Chen X, et al. Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process [J]. Int. J. Miner. Metall. Mater., 2011, 18: 70
[15] Li S L, Zhao Y X, Cui J H, et al. Ultrasonic energy attenuation characteristics in plastic deformation of 2219-O aluminum alloy [J]. Int. J. Adv. Manuf. Technol., 2023, 125: 267
[16] Hu X J, Li X H, Qin Q Y. Influence of ultrasonic vibration on metal plastic forming [J]. Appl. Mech. Mater., 2013, 470: 162
[17] Liu X C, Wu C S. Material flow in ultrasonic vibration enhanced friction stir welding [J]. J. Mater. Process. Technol., 2015, 225: 32
[18] Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding [J]. Scr. Mater., 2015, 102: 95
[19] Wu C S, Wang T, Su H. Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys [J]. J. Manuf. Process., 2022, 75: 13
[20] Ji S D, Niu S Y, Liu J G, et al. Friction stir lap welding of Al to Mg assisted by ultrasound and a Zn interlayer [J]. J. Mater. Process. Technol., 2019, 267: 141
[21] Zhao J J, Wu C S, Shi L, et al. Evolution of microstructures and intermetallic compounds at bonding interface in friction stir welding of dissimilar Al/Mg alloys with/without ultrasonic assistance [J]. J. Mater. Sci. Technol., 2023, 139: 31
[22] Zhao J J, Wu C S, Shi L. Effect of ultrasonic field on microstructure evolution in friction stir welding of dissimilar Al/Mg alloys [J]. J. Mater. Res. Technol., 2022, 17: 1
[23] Zhai M, Shi L, Wu C S. Elucidating the process mechanism in Mg-to-Al friction stir lap welding enhanced by ultrasonic vibration [J]. J. Magnes. Alloys, 2025, 13: 338
[24] Chen Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scr. Mater., 2008, 58: 433
[25] Deng H K, Xie Y M, Meng X C, et al. Improving tensile-shear strength of friction stir lap welded joints of light-weight Mg-Li/Mg-Al-Zn alloys [J]. Weld. World, 2022, 66: 1775
[26] Prangnell P B, Heason C P. Grain structure formation during friction stir welding observed by the ‘stop action technique’ [J]. Acta Mater., 2005, 53: 3179
[27] Shi L. Numerical analysis of thermal process and plastic material flow in ultrasonic vibration enhanced friction stir welding [D]. Jinan: Shandong University, 2016
[27] 石 磊. 超声振动强化搅拌摩擦焊接热过程及材料流动的数值分析 [D]. 济南: 山东大学, 2016
[28] Shi L, Wu C S, Gao S, et al. Modified constitutive equation for use in modeling the ultrasonic vibration enhanced friction stir welding process [J]. Scr. Mater., 2016, 119: 21
[29] Zhai M. Numerical simulation and experimental investigation of Al-to-Mg FSLW/UVeFSLW process [D]. Jinan: Shandong University, 2023
[29] 翟 明. 铝/镁异质合金FSLW/UVeFSLW焊接过程的数值模拟与实验研究 [D]. 济南: 山东大学, 2023
[1] 韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强. 铝合金搅拌摩擦焊热--流耦合仿真及材料迁移轨迹解析[J]. 金属学报, 2026, 62(1): 148-158.
[2] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[3] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[4] 游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.
[5] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[6] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[7] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[8] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[9] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[10] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[11] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[12] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[13] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[14] 罗列文, 王明洋, 高志明, 夏大海, 邓意达, 胡文彬. 高强铝合金晶界氢陷阱的原子尺度作用机制[J]. 金属学报, 2025, 61(11): 1747-1757.
[15] 郑潇禹, 陈辛, 何美玲, 黄奇, 李亚, 孔毅, 杜勇. 基于晶体塑性的6XXX铝合金力学性能多尺度计算[J]. 金属学报, 2025, 61(11): 1758-1768.