|
|
|
| 铝合金搅拌摩擦焊热-力-流耦合仿真及材料迁移轨迹解析 |
韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强( ) |
| 清华大学 机械工程系 清洁高效透平动力装备全国重点实验室 北京 100084 |
|
| Coupled Thermal-Mechanical-Fluid Simulation and Material Migration Trajectory Analysis for Friction Stir Welding of Aluminum Alloy |
HAN Honghua, SHI Qingyu, YANG Chengle, KONG Deshuai, CHEN Gaoqiang( ) |
| State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强. 铝合金搅拌摩擦焊热-力-流耦合仿真及材料迁移轨迹解析[J]. 金属学报, 2026, 62(1): 148-158.
Honghua HAN,
Qingyu SHI,
Chengle YANG,
Deshuai KONG,
Gaoqiang CHEN.
Coupled Thermal-Mechanical-Fluid Simulation and Material Migration Trajectory Analysis for Friction Stir Welding of Aluminum Alloy[J]. Acta Metall Sin, 2026, 62(1): 148-158.
| [1] |
Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 143
|
| [2] |
Colligan K J, Mishra R S. A conceptual model for the process variables related to heat generation in friction stir welding of aluminum [J]. Scr. Mater., 2008, 58: 327
|
| [3] |
Chen G Q, Shi Q Y, Li Y J, et al. Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy [J]. Comput. Mater. Sci., 2013, 79: 540
|
| [4] |
Su H, Wu C S, Pittner A, et al. Thermal energy generation and distribution in friction stir welding of aluminum alloys [J]. Energy, 2014, 77: 720
|
| [5] |
Fratini L, Buffa G, Palmeri D, et al. Material flow in FSW of AA7075-T6 butt joints: Continuous dynamic recrystallization phenomena [J]. J. Eng. Mater. Technol., 2006, 128: 428
|
| [6] |
Nie L, Wu Y X, Gong H. Prediction of temperature and residual stress distributions in friction stir welding of aluminum alloy [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3301
|
| [7] |
Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution [J]. Prog. Mater. Sci., 2021, 117: 100752
|
| [8] |
Wu C S, Su H, Shi L. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding [J]. Acta Metall. Sin., 2018, 54: 265
|
| [8] |
武传松, 宿 浩, 石 磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟 [J]. 金属学报, 2018, 54: 265
|
| [9] |
Schmidt H N B, Dickerson T L, Hattel J H. Material flow in butt friction stir welds in AA2024-T3 [J]. Acta Mater., 2006, 54: 1199
|
| [10] |
Morisada Y, Imaizumi T, Fujii H, et al. Three-dimensional visualization of material flow during friction stir welding of steel and aluminum [J]. J. Mater. Eng. Perform., 2014, 23: 4143
|
| [11] |
Morisada Y, Imaizumi T, Fujii H. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography [J]. Scr. Mater., 2015, 106: 57
|
| [12] |
Huang Y X, Wang Y B, Wan D, et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 1115
|
| [13] |
Zeng X H, Xue P, Wang L, et al. Material flow and void defect formation in friction stir welding of aluminium alloys [J]. Sci. Technol. Weld. Joining, 2018, 23: 677
|
| [14] |
Chen S J, Han Y, Jiang X Q, et al. Study on in-situ material flow behaviour during friction stir welding via a novel material tracing technology [J]. J. Mater. Process. Technol., 2021, 297: 117205
|
| [15] |
Kumar R, Lal A K, Bharti R P, et al. Experimental and computational analyses of material flow characteristics in friction stir welding [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 3011
|
| [16] |
Colegrove P A, Shercliff H R. 3-dimensional CFD modelling of flow round a threaded friction stir welding tool profile [J]. J. Mater. Process. Technol., 2005, 169: 320
|
| [17] |
Bastier A, Maitournam M H, Dang Van K, et al. Steady state thermomechanical modelling of friction stir welding [J]. Sci. Technol. Weld. Joining, 2006, 11: 278
|
| [18] |
Liechty B C, Webb B W. Modeling the frictional boundary condition in friction stir welding [J]. Int. J. Mach. Tools Manuf., 2008, 48: 1474
|
| [19] |
Atharifar H, Lin D C, Kovacevic R. Numerical and experimental investigations on the loads carried by the tool during friction stir welding [J]. J. Mater. Eng. Perform., 2009, 18: 339
|
| [20] |
Yu Z Z, Zhang W, Choo H, et al. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool [J]. Metall. Mater. Trans., 2012, 43A: 724
|
| [21] |
Chen G Q, Feng Z L, Zhu Y C, et al. An alternative frictional boundary condition for computational fluid dynamics simulation of friction stir welding [J]. J. Mater. Eng. Perform., 2016, 25: 4016
|
| [22] |
Yang C L, Chen G Q, Qiao J N, et al. Material flow during dissimilar friction stir welding of Al/Mg alloys [J]. Int. J. Mech. Sci., 2024, 272: 109173
|
| [23] |
Tamadon A, Pons D J, Chakradhar K, et al. 3D-printed tool shoulder design for the analogue modelling of bobbin friction stir weld joint quality [J]. Adv. Mater. Sci., 2021, 21: 27
|
| [24] |
Schneider J A, Nunes Jr A C. Characterization of plastic flow and resulting microtextures in a friction stir weld [J]. Metall. Mater. Trans., 2004, 35B: 777
|
| [25] |
Liu F C, Hovanski Y, Miles M P, et al. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34: 39
|
| [26] |
Liu X C, Sun Y F, Nagira T, et al. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper [J]. Sci. Technol. Weld. Joining, 2019, 24: 352
|
| [27] |
Wu C S, Wang T, Su H. Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys [J]. J. Manuf. Process., 2022, 75: 13
|
| [28] |
Qiao J N, Shi Q Y, Chen S J, et al. Modeling and simulation of interface friction and material flow behavior during friction stir welding [J]. Electr. Weld. Mach., 2023, 53(3): 15
|
| [28] |
乔俊楠, 史清宇, 陈树君 等. 搅拌摩擦焊界面摩擦及材料流动行为仿真 [J]. 电焊机, 2023, 53(3): 15
|
| [29] |
Zhen Y Q, Liu X C, Shen Z K, et al. State-of-art of experimental characterization of material flow in friction stir welding [J]. J. Mech. Eng., 2020, 56(6): 184
|
| [29] |
甄云乾, 刘小超, 申志康 等. 搅拌摩擦焊材料流动的试验表征研究现状 [J]. 机械工程学报, 2020, 56(6): 184
|
| [30] |
Wang X, Gao Y F, Liu X, et al. Tool-workpiece stick-slip conditions and their effects on torque and heat generation rate in the friction stir welding [J]. Acta Mater., 2021, 213: 116969
|
| [31] |
Yang C L, Dai Q L, Shi Q Y, et al. Flow-coupled thermo-mechanical analysis of frictional behaviors at the tool-workpiece interface during friction stir welding [J]. J. Manuf. Process., 2022, 79: 394
|
| [32] |
Xue W, Xiao L Y, Tao T, et al. A novel method of lateral tool-tilt for optimizing material flow and temperature distribution in friction stir welding [J]. Mater. Today Commun., 2024, 40: 109962
|
| [33] |
Qiao J N, Shi Q Y, Wu C S, et al. Elucidation of solid-state metal flow behaviors during friction stir welding: Numerical and experimental investigation [J]. Phys. Fluids, 2023, 35: 123105
|
| [34] |
Yu M, Li W Y, Li J L, et al. Modelling of entire friction stir welding process by explicit finite element method [J]. Mater. Sci. Technol., 2012, 28: 812
|
| [35] |
Sahu M, Paul A, Ganguly S. Influence of frictional heat spread pattern on the formation of intermetallic layers at the dissimilar FSW joint interface between AA 5083 and HSLA steel [J]. J. Manuf. Process., 2022, 83: 555
|
| [36] |
Xu W F, Liu J H, Zhu H Q. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate [J]. Trans. China Weld. Inst., 2010, 31(2): 63
|
| [36] |
徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟 [J]. 焊接学报, 2010, 31(2): 63
|
| [37] |
Wan S Q, Wu Y X, Gong H, et al. Thermal mechanical coupling simulation of temperature and residual stress in friction stir welding of 2219 aluminum alloy [J]. Hot Work. Technol., 2019, 48(13): 159
|
| [37] |
万胜强, 吴运新, 龚 海 等. 2219铝合金搅拌摩擦焊温度与残余应力热力耦合模拟 [J]. 热加工工艺, 2019, 48(13): 159
|
| [38] |
Ke L M, Pan J L, Xing L, et al. Sucking-extruding theory for the material flow in friction stir welds [J]. J. Mech. Eng., 2009, 45(4): 89
|
| [38] |
柯黎明, 潘际銮, 邢 丽 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论 [J]. 机械工程学报, 2009, 45(4): 89
|
| [39] |
He C S, Qie M F, Zhang Z Q, et al. Effect of axial ultrasonic vibration on metal flow behavior during friction stir welding [J]. Acta Metall. Sin., 2021, 57: 1614
|
| [39] |
何长树, 郄默繁, 张志强 等. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响 [J]. 金属学报, 2021, 57: 1614
|
| [40] |
Jain R, Pal S K, Singh S B. A study on the variation of forces and temperature in a friction stir welding process: A finite element approach [J]. J. Manuf. Process., 2016, 23: 278
|
| [41] |
Ou L, Sun B, Wang Z. Flow stress of 2219 aluminium alloy during hot compression deformation [J]. Hot Work. Technol., 2008, 37(2): 42
|
| [41] |
欧 玲, 孙 斌, 王 智. 2219铝合金热压缩变形流变应力 [J]. 热加工工艺, 2008, 37(2): 42
|
| [42] |
Wang Z T, Tian R Z. Handbook of Aluminum and Aluminum Alloys [M]. 2nd Ed., Changsha: Central South University Press, 2000: 188
|
| [42] |
王祝堂, 田荣璋. 铝合金及其加工手册 [M]. 第2版. 长沙: 中南大学出版社, 2000: 188
|
| [43] |
Davis J R. Aluminum and Aluminum Alloys [M]. Materials Park: ASM International, 1993: 68
|
| [44] |
Colegrove P A, Shercliff H R. CFD modelling of friction stir welding of thick plate 7449 aluminium alloy [J]. Sci. Technol. Weld. Joining, 2006, 11: 429
|
| [45] |
Su H, Wu C S, Bachmann M, et al. Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding [J]. Mater. Des., 2015, 77: 114
|
| [46] |
Chen G Q, Wang G Q, Shi Q Y, et al. Three-dimensional thermal-mechanical analysis of retractable pin tool friction stir welding process [J]. J. Manuf. Process., 2019, 41: 1
|
| [47] |
Chen G Q, Liu X, Qiao J N, et al. Improved analytical model for thermal softening in aluminum alloys form room temperature to solidus [J]. Materials, 2023, 16: 7358
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|