Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 148-158    DOI: 10.11900/0412.1961.2025.00240
  研究论文 本期目录 | 过刊浏览 |
铝合金搅拌摩擦焊热--流耦合仿真及材料迁移轨迹解析
韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强()
清华大学 机械工程系 清洁高效透平动力装备全国重点实验室 北京 100084
Coupled Thermal-Mechanical-Fluid Simulation and Material Migration Trajectory Analysis for Friction Stir Welding of Aluminum Alloy
HAN Honghua, SHI Qingyu, YANG Chengle, KONG Deshuai, CHEN Gaoqiang()
State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
引用本文:

韩鸿华, 史清宇, 杨诚乐, 孔德帅, 陈高强. 铝合金搅拌摩擦焊热--流耦合仿真及材料迁移轨迹解析[J]. 金属学报, 2026, 62(1): 148-158.
Honghua HAN, Qingyu SHI, Chengle YANG, Deshuai KONG, Gaoqiang CHEN. Coupled Thermal-Mechanical-Fluid Simulation and Material Migration Trajectory Analysis for Friction Stir Welding of Aluminum Alloy[J]. Acta Metall Sin, 2026, 62(1): 148-158.

全文: PDF(2622 KB)   HTML
摘要: 

搅拌摩擦焊(FSW)过程中,材料在数秒时间内迅速完成材料流动-沉积过程。为解析材料流经搅拌头附近的完整轨迹,本工作以2219-T87铝合金FSW过程为研究对象,构建了FSW过程热-力-流全耦合仿真模型,并运用轨迹追踪算法,着重分析了FSW过程中材料流动-沉积的轨迹。结果表明,焊接过程中材料流动-沉积行为受其所处位置影响:靠近轴肩的材料流经搅拌头附近的轨迹呈多圈绕流模式,材料在流动过程中,绕行半径由大变小,并在搅拌针附近发生显著的向下迁移,沉积位置均位于前进侧;远离轴肩的材料呈现出直通流动模式,材料未完成整圈流动后便沉积在搅拌针后方,前进侧材料焊后沉积在前进侧,后退侧材料焊后沉积在后退侧。

关键词 搅拌摩擦焊铝合金材料流动数值模拟    
Abstract

Although friction stir welding (FSW) is widely employed in aerospace and other engineering fields owing to its ability to produce high-quality joints and low residual stresses, the understanding of its physical mechanisms remains limited by the intense material flow during welding, which lags behind engineering practice. This gap motivates researchers to develop thermo-mechanical coupling models to elucidate the underlying physics, aiming to expand its application boundaries. During FSW, the material undergoes a highly rapid flow-deposition process that is completed within a few seconds. In this study, we present a fully coupled thermo-mechanical-fluid model for friction-stir-welded 2219-T87 aluminum alloy to demonstrate the complete material transport path in the vicinity of the tool. A particle-tracking algorithm was employed to quantitatively analyze the flow and subsequent refilling trajectory of the tracer material. The predicted temperature history and flow-zone geometry showed close agreement with experimental data. At the axis Z = 7 mm, the peak downward vertical velocity of the material reached 16.57 mm/s at the advancing side of the pin, whereas the peak upward vertical velocity reached 10.47 mm/s at the retreating side. The analysis revealed that the flow-deposition behavior of the material was highly position dependent. The material adjacent to the shoulder followed a multi-loop spiral trajectory around the tool, during which the loop radius gradually decreased and the material migrated markedly downward in the vicinity of the pin. Ultimately, all deposits accumulated on the advancing side. In contrast, the material far from the shoulder exhibited a through-flow pattern, depositing behind the pin without completing a full revolution. Post-weld deposits originating from the advancing side remained on the advancing side, whereas those from the retreating side settled on the retreating side.

Key wordsfriction stir welding    aluminum alloy    material flow    numerical simulation
收稿日期: 2025-08-20     
ZTFLH:  TG456.9  
基金资助:国家自然科学基金项目(52175334);清洁高效透平动力装备全国重点实验室课题项目(DEC8300CG202428557A-1228215)
通讯作者: 陈高强,cheng1@tsinghua.edu.cn,主要从事搅拌摩擦焊物理过程的建模仿真等研究
作者简介: 韩鸿华,男,1978年生,研究员,博士生
图1  搅拌摩擦焊(FSW)实验过程示意图
图2  几何模型及六面体网格划分
图3  FSW过程中工件表面的温度分布预测结果,X = 0 mm截面上的温度分布,及热电偶安装处温度仿真结果与实测结果
图4  X = 0 mm截面材料流动速度的分布结果
图5  焊缝塑性变形搅拌头附近X = 0 mm截面上应变速率的预测结果及其实验宏观形貌
图6  Z = 7 mm和Z = 3 mm两个平面位置材料的流动速度分布
图7  Z = 7 mm和Z = 3 mm两个平面位置材料在垂直方向上的速度分布
图8  Z = 7 mm和Z = 3 mm平面材料流动轨迹的分布
图9  起始于Y = -2.5 mm、Z = 7 mm的多圈绕流路径及其Z向速度分布
图10  起始于Y = 2.5 mm、Z = 7 mm的多圈绕流路径及其Z向速度分布
图11  起始于Y = -1.2 mm、Z = 3 mm 的直通流动路径及其Z向速度分布
图12  起始于Y = 1.2 mm、Z = 3 mm的直通流动路径及其Z向速度分布
[1] Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 143
[2] Colligan K J, Mishra R S. A conceptual model for the process variables related to heat generation in friction stir welding of aluminum [J]. Scr. Mater., 2008, 58: 327
[3] Chen G Q, Shi Q Y, Li Y J, et al. Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy [J]. Comput. Mater. Sci., 2013, 79: 540
[4] Su H, Wu C S, Pittner A, et al. Thermal energy generation and distribution in friction stir welding of aluminum alloys [J]. Energy, 2014, 77: 720
[5] Fratini L, Buffa G, Palmeri D, et al. Material flow in FSW of AA7075-T6 butt joints: Continuous dynamic recrystallization phenomena [J]. J. Eng. Mater. Technol., 2006, 128: 428
[6] Nie L, Wu Y X, Gong H. Prediction of temperature and residual stress distributions in friction stir welding of aluminum alloy [J]. Int. J. Adv. Manuf. Technol., 2020, 106: 3301
[7] Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution [J]. Prog. Mater. Sci., 2021, 117: 100752
[8] Wu C S, Su H, Shi L. Numerical simulation of heat generation, heat transfer and material flow in friction stir welding [J]. Acta Metall. Sin., 2018, 54: 265
[8] 武传松, 宿 浩, 石 磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟 [J]. 金属学报, 2018, 54: 265
[9] Schmidt H N B, Dickerson T L, Hattel J H. Material flow in butt friction stir welds in AA2024-T3 [J]. Acta Mater., 2006, 54: 1199
[10] Morisada Y, Imaizumi T, Fujii H, et al. Three-dimensional visualization of material flow during friction stir welding of steel and aluminum [J]. J. Mater. Eng. Perform., 2014, 23: 4143
[11] Morisada Y, Imaizumi T, Fujii H. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography [J]. Scr. Mater., 2015, 106: 57
[12] Huang Y X, Wang Y B, Wan D, et al. Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 1115
[13] Zeng X H, Xue P, Wang L, et al. Material flow and void defect formation in friction stir welding of aluminium alloys [J]. Sci. Technol. Weld. Joining, 2018, 23: 677
[14] Chen S J, Han Y, Jiang X Q, et al. Study on in-situ material flow behaviour during friction stir welding via a novel material tracing technology [J]. J. Mater. Process. Technol., 2021, 297: 117205
[15] Kumar R, Lal A K, Bharti R P, et al. Experimental and computational analyses of material flow characteristics in friction stir welding [J]. Int. J. Adv. Manuf. Technol., 2021, 115: 3011
[16] Colegrove P A, Shercliff H R. 3-dimensional CFD modelling of flow round a threaded friction stir welding tool profile [J]. J. Mater. Process. Technol., 2005, 169: 320
[17] Bastier A, Maitournam M H, Dang Van K, et al. Steady state thermomechanical modelling of friction stir welding [J]. Sci. Technol. Weld. Joining, 2006, 11: 278
[18] Liechty B C, Webb B W. Modeling the frictional boundary condition in friction stir welding [J]. Int. J. Mach. Tools Manuf., 2008, 48: 1474
[19] Atharifar H, Lin D C, Kovacevic R. Numerical and experimental investigations on the loads carried by the tool during friction stir welding [J]. J. Mater. Eng. Perform., 2009, 18: 339
[20] Yu Z Z, Zhang W, Choo H, et al. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool [J]. Metall. Mater. Trans., 2012, 43A: 724
[21] Chen G Q, Feng Z L, Zhu Y C, et al. An alternative frictional boundary condition for computational fluid dynamics simulation of friction stir welding [J]. J. Mater. Eng. Perform., 2016, 25: 4016
[22] Yang C L, Chen G Q, Qiao J N, et al. Material flow during dissimilar friction stir welding of Al/Mg alloys [J]. Int. J. Mech. Sci., 2024, 272: 109173
[23] Tamadon A, Pons D J, Chakradhar K, et al. 3D-printed tool shoulder design for the analogue modelling of bobbin friction stir weld joint quality [J]. Adv. Mater. Sci., 2021, 21: 27
[24] Schneider J A, Nunes Jr A C. Characterization of plastic flow and resulting microtextures in a friction stir weld [J]. Metall. Mater. Trans., 2004, 35B: 777
[25] Liu F C, Hovanski Y, Miles M P, et al. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34: 39
[26] Liu X C, Sun Y F, Nagira T, et al. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper [J]. Sci. Technol. Weld. Joining, 2019, 24: 352
[27] Wu C S, Wang T, Su H. Material flow velocity, strain and strain rate in ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys [J]. J. Manuf. Process., 2022, 75: 13
[28] Qiao J N, Shi Q Y, Chen S J, et al. Modeling and simulation of interface friction and material flow behavior during friction stir welding [J]. Electr. Weld. Mach., 2023, 53(3): 15
[28] 乔俊楠, 史清宇, 陈树君 等. 搅拌摩擦焊界面摩擦及材料流动行为仿真 [J]. 电焊机, 2023, 53(3): 15
[29] Zhen Y Q, Liu X C, Shen Z K, et al. State-of-art of experimental characterization of material flow in friction stir welding [J]. J. Mech. Eng., 2020, 56(6): 184
[29] 甄云乾, 刘小超, 申志康 等. 搅拌摩擦焊材料流动的试验表征研究现状 [J]. 机械工程学报, 2020, 56(6): 184
[30] Wang X, Gao Y F, Liu X, et al. Tool-workpiece stick-slip conditions and their effects on torque and heat generation rate in the friction stir welding [J]. Acta Mater., 2021, 213: 116969
[31] Yang C L, Dai Q L, Shi Q Y, et al. Flow-coupled thermo-mechanical analysis of frictional behaviors at the tool-workpiece interface during friction stir welding [J]. J. Manuf. Process., 2022, 79: 394
[32] Xue W, Xiao L Y, Tao T, et al. A novel method of lateral tool-tilt for optimizing material flow and temperature distribution in friction stir welding [J]. Mater. Today Commun., 2024, 40: 109962
[33] Qiao J N, Shi Q Y, Wu C S, et al. Elucidation of solid-state metal flow behaviors during friction stir welding: Numerical and experimental investigation [J]. Phys. Fluids, 2023, 35: 123105
[34] Yu M, Li W Y, Li J L, et al. Modelling of entire friction stir welding process by explicit finite element method [J]. Mater. Sci. Technol., 2012, 28: 812
[35] Sahu M, Paul A, Ganguly S. Influence of frictional heat spread pattern on the formation of intermetallic layers at the dissimilar FSW joint interface between AA 5083 and HSLA steel [J]. J. Manuf. Process., 2022, 83: 555
[36] Xu W F, Liu J H, Zhu H Q. Numerical simulation of thermal field of friction stir welded 2219 aluminum alloy thick plate [J]. Trans. China Weld. Inst., 2010, 31(2): 63
[36] 徐韦锋, 刘金合, 朱宏强. 2219铝合金厚板搅拌摩擦焊接温度场数值模拟 [J]. 焊接学报, 2010, 31(2): 63
[37] Wan S Q, Wu Y X, Gong H, et al. Thermal mechanical coupling simulation of temperature and residual stress in friction stir welding of 2219 aluminum alloy [J]. Hot Work. Technol., 2019, 48(13): 159
[37] 万胜强, 吴运新, 龚 海 等. 2219铝合金搅拌摩擦焊温度与残余应力热力耦合模拟 [J]. 热加工工艺, 2019, 48(13): 159
[38] Ke L M, Pan J L, Xing L, et al. Sucking-extruding theory for the material flow in friction stir welds [J]. J. Mech. Eng., 2009, 45(4): 89
[38] 柯黎明, 潘际銮, 邢 丽 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论 [J]. 机械工程学报, 2009, 45(4): 89
[39] He C S, Qie M F, Zhang Z Q, et al. Effect of axial ultrasonic vibration on metal flow behavior during friction stir welding [J]. Acta Metall. Sin., 2021, 57: 1614
[39] 何长树, 郄默繁, 张志强 等. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响 [J]. 金属学报, 2021, 57: 1614
[40] Jain R, Pal S K, Singh S B. A study on the variation of forces and temperature in a friction stir welding process: A finite element approach [J]. J. Manuf. Process., 2016, 23: 278
[41] Ou L, Sun B, Wang Z. Flow stress of 2219 aluminium alloy during hot compression deformation [J]. Hot Work. Technol., 2008, 37(2): 42
[41] 欧 玲, 孙 斌, 王 智. 2219铝合金热压缩变形流变应力 [J]. 热加工工艺, 2008, 37(2): 42
[42] Wang Z T, Tian R Z. Handbook of Aluminum and Aluminum Alloys [M]. 2nd Ed., Changsha: Central South University Press, 2000: 188
[42] 王祝堂, 田荣璋. 铝合金及其加工手册 [M]. 第2版. 长沙: 中南大学出版社, 2000: 188
[43] Davis J R. Aluminum and Aluminum Alloys [M]. Materials Park: ASM International, 1993: 68
[44] Colegrove P A, Shercliff H R. CFD modelling of friction stir welding of thick plate 7449 aluminium alloy [J]. Sci. Technol. Weld. Joining, 2006, 11: 429
[45] Su H, Wu C S, Bachmann M, et al. Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding [J]. Mater. Des., 2015, 77: 114
[46] Chen G Q, Wang G Q, Shi Q Y, et al. Three-dimensional thermal-mechanical analysis of retractable pin tool friction stir welding process [J]. J. Manuf. Process., 2019, 41: 1
[47] Chen G Q, Liu X, Qiao J N, et al. Improved analytical model for thermal softening in aluminum alloys form room temperature to solidus [J]. Materials, 2023, 16: 7358
[1] 阴嘉琳, 石磊, 武传松. 超声振动对镁/铝异质合金搅拌摩擦搭接焊接头界面组织演变的影响[J]. 金属学报, 2026, 62(1): 133-147.
[2] 瞿铁, 谢杨, 王重阳, 李利霞, 徐侠剑, 毛峙溆, 骆文泽, 黄智泉, 邓德安. 34CrNi1Mo/Q355B异种钢对接接头残余应力及焊后热处理对残余应力的影响[J]. 金属学报, 2026, 62(1): 203-216.
[3] 王启勇, 李晓博, 刘小超, 王心成, 张泰瑞, 倪中华, 陈彪. 低碳钢预制涡流搅拌摩擦焊工艺研究[J]. 金属学报, 2026, 62(1): 217-234.
[4] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[5] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[6] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[7] 罗列文, 王明洋, 高志明, 夏大海, 邓意达, 胡文彬. 高强铝合金晶界氢陷阱的原子尺度作用机制[J]. 金属学报, 2025, 61(11): 1747-1757.
[8] 郑潇禹, 陈辛, 何美玲, 黄奇, 李亚, 孔毅, 杜勇. 基于晶体塑性的6XXX铝合金力学性能多尺度计算[J]. 金属学报, 2025, 61(11): 1758-1768.
[9] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[10] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[11] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[12] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[13] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[14] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[15] 王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.