|
|
镁合金一体化压铸缺陷控制 |
蒋斌, 张昂( ), 宋江凤, 黎田, 游国强, 郑江, 潘复生 |
重庆大学 材料科学与工程学院 国家镁合金材料工程技术研究中心 高端装备铸造技术全国重点实验室 重庆 400044 |
|
Defect Control of Magnesium Alloy Gigacastings |
JIANG Bin, ZHANG Ang( ), SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng |
National Key Laboratory of Advanced Casting Technologies, National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China |
引用本文:
蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
Bin JIANG,
Ang ZHANG,
Jiangfeng SONG,
Tian LI,
Guoqiang YOU,
Jiang ZHENG,
Fusheng PAN.
Defect Control of Magnesium Alloy Gigacastings[J]. Acta Metall Sin, 2025, 61(3): 383-396.
1 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metal. Sin., 2021, 57: 1362
|
1 |
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
2 |
Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
|
3 |
Li Y F, Zhang A, Li C M, et al. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application [J]. J. Mater. Res. Technol., 2023, 26: 2919
|
4 |
Jiang B, Dong Z H, Zhang A, et al. Recent advances in micro-alloyed wrought magnesium alloys: Theory and design [J]. Trans. Nonferrous Met. Soc. Chin., 2022, 32: 1741
|
5 |
Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
|
6 |
Chen W T, Yang J Y, Yu W B, et al. One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite [J]. J. Magnes. Alloy., 2024, 12: 4219
|
7 |
Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
|
8 |
Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnes. Alloy., 2023, 11: 78
|
9 |
Zhang Z M, Yu J M, Xue Y, et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties [J]. J. Magnes. Alloy., 2023, 11: 4054
|
10 |
Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review [J]. J. Magnes. Alloy., 2023, 11: 15
|
11 |
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
|
12 |
Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: A review [J]. J. Magnes. Alloy., 2023, 11: 3609
|
13 |
Luo A A. Magnesium casting technology for structural applications [J]. J. Magnes. Alloy., 2013, 1: 2
|
14 |
Weiler J P. A review of magnesium die-castings for closure applications [J]. J. Magnes. Alloy., 2019, 7: 297
doi: 10.1016/j.jma.2019.02.005
|
15 |
Li Z X, Li D J, Zhou W K, et al. Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys [J]. J. Magnes. Alloy., 2022, 10: 1857
|
16 |
Wu M W, Hou Y Y, Hua L, et al. On the deformation behavior of heterogeneous microstructure and its effect on the mechanical properties of die cast AZ91D magnesium alloy [J]. J. Magnes. Alloy., 2022, 10: 1981
|
17 |
Zhu S M, Abbott T B, Nie J F, et al. Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44 [J]. J. Magnes. Alloy., 2021, 9: 1537
|
18 |
Prasad S V S, Prasad S B, Verma K, et al. The role and significance of Magnesium in modern day research-A review [J]. J. Magnes. Alloy., 2022, 10: 1
|
19 |
Li P J, Xie Y R. Transformation and development of subverting traditional automotive manufacturing model [J]. Chin. Ind. Inf. Technol., 2020, (10): 48
|
19 |
李培杰, 谢禹睿. 颠覆传统汽车制造模式的变革发展 [J]. 中国工业和信息化, 2020, (10): 48
|
20 |
Tao Y L, Zhang M Y, Xiang K J, et al. Integrated die casting promotes the innovation and development of aluminum alloy materials [J]. Foundry Equip. Technol., 2022, (4): 67
|
20 |
陶永亮, 张明怡, 向科军 等. 一体化压铸促进铝合金材料创新与发展 [J]. 铸造设备与工艺, 2022, (4): 67
|
21 |
Li T, Song J F, Zhang A, et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components [J]. J. Magnes. Alloy., 2023, 11: 4166
|
22 |
Tao Y L, Yang J J, Liu X T, et al. Large die-casting die is the key technology to realize integrated die-casting [J]. Die Mould Manuf., 2023, 23: 47
|
22 |
陶永亮, 杨建京, 刘雪停 等. 大型压铸模是实现一体化压铸的关键技术 [J]. 模具制造, 2023, 23: 47
|
23 |
Xiao X Y. “Jin” precedes “opportunity” leading the new era of die casting [J]. Chin. Ind. Inf. Technol., 2023, (11): 28
|
23 |
肖昕宇. “劲”占先“机”引领压铸新时代 [J]. 中国工业和信息化, 2023, (11): 28
|
24 |
Jiang B, Zhang A, Yang Y, et al. Recent advances in numerical simulation of solidification process in cast magnesium alloys [J]. Foundry, 2024, 73: 1043
|
24 |
蒋 斌, 张 昂, 杨 艳 等. 铸造镁合金凝固过程数值模拟研究进展 [J]. 铸造, 2024, 73: 1043
|
25 |
Zhang A, Guo Z P, Jiang B, et al. Phase-field modeling of microstructure and gas porosity evolution during solidification of alloys: A review [J]. Chin. J. Nonferr. Metals, 2021, 31: 2976
|
25 |
张 昂, 郭志鹏, 蒋 斌 等. 合金凝固组织和气孔演变相场模拟研究进展 [J]. 中国有色金属学报, 2021, 31: 2976
|
26 |
Zhang A. Multi-physical phase-field modeling of microstructure and hydrogen porosity evolution during solidification of aluminum alloys [D]. Beijing: Tsinghua University, 2020
|
26 |
张 昂. 铝合金多物理场凝固组织和氢气孔演变的相场建模研究 [D]. 北京: 清华大学, 2020
|
27 |
Xiong S M, Du J L, Guo Z P, et al. Characterization and modeling study on interfacial heat transfer behavior and solidified microstructure of die cast magnesium alloys [J]. Acta Metal. Sin., 2018, 54: 174
|
27 |
熊守美, 杜经莲, 郭志鹏 等. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究 [J]. 金属学报, 2018, 54: 174
doi: 10.11900/0412.1961.2017.00418
|
28 |
Yang H M, Pu Z M, Guo Z P, et al. A study of metal/die interfacial heat transfer behavior of vacuum die cast pure copper [J]. China Foundry, 2020, 17: 206
|
29 |
Xie H C, Wang J, Li Y F, et al. Fast shot speed induced microstructure and mechanical property evolution of high pressure die casting Mg-Al-Zn-RE alloys [J]. J. Mater. Process. Technol., 2024, 331: 118523
|
30 |
Yang Z F, Maurey A, Kang J D, et al. 2D and 3D characterization of pore defects in die cast AM60 [J]. Mater. Charact., 2016, 114: 254
|
31 |
Li X, Xiong S M, Guo Z. Correlation between porosity and fracture mechanism in high pressure die casting of AM60B alloy [J]. J. Mater. Sci. Technol., 2016, 32: 54
doi: 10.1016/j.jmst.2015.10.002
|
32 |
Yu W B, Ma C S, Ma Y H, et al. Correlation of 3D defect-band morphologies and mechanical properties in high pressure die casting magnesium alloy [J]. J. Mater. Process. Technol., 2021, 288: 116853
|
33 |
Song J F, Zhao H, Liao J G, et al. Comparison on hot tearing behavior of binary Mg-Al, Mg-Y, Mg-Gd, Mg-Zn, and Mg-Ca alloys [J]. Metall. Mater. Trans., 2022, 53A: 2986
|
34 |
Barbagallo S. Shrinkage porosity in thin walled AM60 HPDC magnesium alloy U-shaped box [J]. Int. J. Cast Met. Res., 2004, 17: 364
|
35 |
Zhang A, Su D B, Li C M, et al. Investigation of bubble dynamics in a micro-channel with obstacles using a conservative phase-field lattice Boltzmann method [J]. Phys. Fluids, 2022, 34: 043312
|
36 |
Zhang A, Su D B, Li C M, et al. Three-dimensional phase-field lattice-Boltzmann simulations of a rising bubble interacting with obstacles: Shape quantification and parameter dependence [J]. Phys. Fluids, 2022, 34: 103301
|
37 |
Zhang A, Guo Z P, Wang Q G, et al. Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study [J]. Phys. Fluids, 2019, 31: 063106
|
38 |
Zhang A, Du J L, Guo Z P, et al. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking [J]. Phys. Rev., 2019, 100E: 023305
|
39 |
Cheng J, Zhang A, Qin L, et al. Interaction between growing dendrite and rising bubble under convection [J]. Int. J. Multiphase Flow, 2024, 170: 104656
|
40 |
Zhang A, Jiang B, Guo Z P, et al. Solution to multiscale and multiphysics problems: A phase-field study of fully coupled thermal-solute-convection dendrite growth [J]. Adv. Theory Simul., 2021, 4: 2000251
|
41 |
Zhang A, Meng S X, Guo Z P, et al. Dendritic growth under natural and forced convection in Al-Cu alloys: From equiaxed to columnar dendrites and from 2D to 3D phase-field simulations [J]. Metall. Mater. Trans., 2019, 50B: 1514
|
42 |
Zhang A, Guo Z P, Xiong S M. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt [J]. China Foundry, 2017, 14: 373
|
43 |
Yang Q, Zhang A, Jiang B, et al. Numerical investigation of eutectic growth dynamics under convection by 3D phase-field method [J]. Comput. Math. Appl., 2022, 114: 83
|
44 |
Zhang A, Guo Z P, Jiang B, et al. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification [J]. Acta Mater., 2021, 214: 117005
|
45 |
Zhang A, Du J L, Zhang X P, et al. Phase-field modeling of microstructure evolution in the presence of bubble during solidification [J]. Metall. Mater. Trans., 2020, 51A: 1023
|
46 |
Zhang A, Guo Z, Wang Q, et al. Multiphase-field modelling of hydrogen pore evolution during alloy solidification [J]. IOP Conf. Ser. Mater. Sci. Eng., 2020, 861: 012021
|
47 |
Wu M W, Hou Y Y, Li X B, et al. Microstructure characteristics and formation mechanism of defect band in die cast magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 117
|
47 |
吴孟武, 侯莹滢, 李晓波 等. 压铸镁合金缺陷带的组织特征及形成机理 [J]. 特种铸造及有色合金, 2020, 40: 117
doi: 10.15980/j.tzzz.2020.02.001
|
48 |
Gourlay C M, Dahle A K. Dilatant shear bands in solidifying metals [J]. Nature, 2007, 445: 70
|
49 |
Li X B, Guo Z P, Xiong S M. Influence of melt flow on the formation of defect band in high pressure die casting of AZ91D magnesium alloy [J]. Mater. Charact., 2017, 129: 344
|
50 |
Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys [J]. J. Light Met., 2001, 1: 61
|
51 |
Deda E, Berman T D, Allison J E. The influence of al content and thickness on the microstructure and tensile properties in high-pressure die cast magnesium alloys [J]. Metall. Mater. Trans., 2017, 48A: 1999
|
52 |
Yang K V, Cáceres C H, Nagasekhar A V, et al. The skin effect and the yielding behavior of cold chamber high pressure die cast Mg-Al alloys [J]. Mater. Sci. Eng., 2012, A542: 49
|
53 |
Li X B, Xiong S M, Guo Z P. Characterization of the grain structures in vacuum-assist high-pressure die casting AM60B alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 619
|
54 |
Hou Y Y, Wu M W, Tian B H, et al. Characteristics and formation mechanisms of defect bands in vacuum-assisted high-pressure die casting AE44 alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 1852
|
55 |
Otarawanna S, Gourlay C M, Laukli H I, et al. The thickness of defect bands in high-pressure die castings [J]. Mater. Charact., 2009, 60: 1432
|
56 |
Zhang T T, Yu W B, Ma C S, et al. The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 3141
|
57 |
Le T H, Wei Q, Wang J H, et al. Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy [J]. Mater. Res. Express, 2020, 7: 116513
|
58 |
Yang Z Z, Wang K, Fu P H, et al. Influence of alloying elements on hot tearing susceptibility of Mg-Zn alloys based on thermodynamic calculation and experimental [J]. J. Magnes. Alloy., 2018, 6: 44
|
59 |
Vinodh G, Nodooshan H R J, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
|
60 |
Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Met., 2021, 15: 1298
|
61 |
Yang Z Y, Li M Q, Song J F, et al. Optimized hot tearing resistance of VW63K magnesium alloy [J]. Int. J. Met., 2022, 16: 1858
|
62 |
Zhu G N, Wang Z, Qiu W Y, et al. Effect of Yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Met., 2020, 14: 179
|
63 |
Su X, Feng Z J, Wang F, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy [J]. Int. J. Met., 2021, 15: 576
|
64 |
Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
|
65 |
Xia Y T, Zheng J, Chen J, et al. The ductility variation of high-pressure die-cast AE44 alloy: The role of inhomogeneous microstructure [J]. Metall. Mater. Trans., 2021, 52A: 2274
|
66 |
Zhang Y F, Zheng J, Xia Y T, et al. Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography [J]. Mater. Sci. Eng., 2020, A772: 138781
|
67 |
Li X, Xiong S M, Guo Z. Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy [J]. J. Mater. Process. Technol., 2016, 231: 1
|
68 |
Ma C S, Yu W B, Zhang T T, et al. The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 753
|
69 |
Lee C, Youn J, Kim Y. Effect of strain rate on the defect susceptibility of tensile properties to porosity variation [J]. Mater. Sci. Eng., 2017, A683: 135
|
70 |
Lee C D, Shin K S. Effect of microporosity on the tensile properties of AZ91 magnesium alloy [J]. Acta Mater., 2007, 55: 4293
|
71 |
Zhou B, Meng D H, Wu D, et al. Characterization of porosity and its effect on the tensile properties of Mg-6Gd-3Y-0.5Zr alloy [J]. Mater. Charact., 2019, 152: 204
doi: 10.1016/j.matchar.2019.04.021
|
72 |
Susan D F, Crenshaw T B, Gearhart J S. The effects of casting porosity on the tensile behavior of investment cast 17-4PH stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 2917
|
73 |
Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
|
74 |
Yu B, Jia Z, Li Y J, et al. Research progress of purification technology in magnesium alloy melt [J]. Foundry Technol., 2021, 42: 635
|
74 |
喻 兵, 贾 征, 李又佳 等. 镁合金熔体净化技术研究进展 [J]. 铸造技术, 2021, 42: 635
|
75 |
Fan X Z, Wang R, Ma J, et al. Effect of mixed-RE on fluidity and mechanical properties of die casting AZ91D magnesium alloy [J]. Foundry Technol., 2022, 43: 285
|
75 |
樊晓泽, 王 瑞, 马 骏 等. 混合稀土对AZ91D压铸镁合金流动性及力学性能的影响 [J]. 铸造技术, 2022, 43: 285
|
76 |
Zha J L. A study on Mg melt continuous non-flux purification theory and key techniques [D]. Chongqing: Chongqing University, 2018
|
76 |
查吉利. 镁熔体无熔剂连续精炼理论及关键技术研究 [D]. 重庆: 重庆大学, 2018
|
77 |
Weiler J P. Exploring the concept of castability in magnesium die-casting alloys [J]. J. Magnes. Alloy., 2021, 9: 102
doi: 10.1016/j.jma.2020.05.008
|
78 |
Ma C S, Yu W B, Pi X F, et al. Study of Mg-Al-Ca magnesium alloy ameliorated with designed Al8Mn4Gd phase [J]. J. Magnes. Alloy., 2020, 8: 1084
|
79 |
Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
|
80 |
Ni J, Jin L, Zeng J, et al. Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review [J]. J. Magnes. Alloy., 2023, 11: 1
|
81 |
You J, Wang C, Shang S L, et al. Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys [J]. J. Magnes. Alloy., 2023, 11: 2006
|
82 |
Bai Y, Ye B, Wang L Y, et al. A novel die-casting Mg alloy with superior performance: Study of microstructure and mechanical behavior [J]. Mater. Sci. Eng., 2021, A802: 140655
|
83 |
Rong J, Xiao W L, Fu Y, et al. A high performance Mg-Al-Ca alloy processed by high pressure die casting: Microstructure, mechanical properties and thermal conductivity [J]. Mater. Sci. Eng., 2022, A849: 143500
|
84 |
Wang F, Dong H K, Sun S J, et al. Microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca-xSn alloys [J]. J. Mater. Eng. Perform., 2018, 27: 612
|
85 |
Yang Q, Guan K, Bu F Q, et al. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy [J]. Mater. Charact., 2016, 113: 180
|
86 |
Yang Q, Bu F Q, Zheng T, et al. Influence of trace Sr additions on the microstructures and the mechanical properties of Mg-Al-La-based alloy [J]. Mater. Sci. Eng., 2014, A619: 256
|
87 |
Li X. Research on microstructures and properties of moderate or high strength and high thermal conductivity Mg-Al-Ce series die-cast magnesium alloys [D]. Xi'an: Xi'an University of Technology, 2022
|
87 |
李 潇. 中强高导热Mg-Al-Ce系压铸镁合金组织与性能研究 [D]. 西安: 西安理工大学, 2022
|
88 |
Han Q, Zhang J. Fluidity of alloys under high-pressure die casting conditions: Flow-choking mechanisms [J]. Metall. Mater. Trans., 2020, 51B: 1795
|
89 |
Sharifi P, Jamali J, Sadayappan K, et al. Quantitative experimental study of defects induced by process parameters in the high-pressure die cast process [J]. Metall. Mater. Trans., 2018, 49A: 3080
|
90 |
Zhang J L, Chen L, Tian J J, et al. Numerical simulation and die casting process optimization of magnesium alloy vehicle head-up display bracket (HUD) [J]. Spec. Cast. Nonferrous Alloy., 2023, 43: 1141
|
90 |
张继龙, 陈 龙, 田晶晶 等. 镁合金汽车抬头显示支架压铸工艺模拟与优化 [J]. 特种铸造及有色合金, 2023, 43: 1141
|
91 |
Dou K, Lordan E, Zhang Y J, et al. A complete computer aided engineering (CAE) modelling and optimization of high pressure die casting (HPDC) process [J]. J. Manuf. Process., 2020, 60: 435
doi: 10.1016/j.jmapro.2020.10.062
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|