Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 361-371    DOI: 10.11900/0412.1961.2024.00358
  综述 本期目录 | 过刊浏览 |
镁合金的多系滑移与塑性调控
曾小勤1,2(), 于铭迪1,2, 王静雅1,2
1 上海交通大学 轻合金精密成型国家工程研究中心 上海 200240
2 上海交通大学 金属基复合材料国家重点实验室 上海 200240
Multi-Slips and Ductility Regulation of Magnesium Alloys
ZENG Xiaoqin1,2(), YU Mingdi1,2, WANG Jingya1,2
1 National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
Xiaoqin ZENG, Mingdi YU, Jingya WANG. Multi-Slips and Ductility Regulation of Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 361-371.

全文: PDF(2064 KB)   HTML
摘要: 

镁合金绝对强度低的瓶颈问题现已取得重大突破,但是其塑性仍旧偏低,可加工性和成形性欠佳,且强塑性匹配不足,导致镁合金构件在应用过程中存在诸多限制。本文从Mg的晶体结构特性及塑性变形机制出发,深入阐述了镁合金塑韧化的思路,指出了“多系滑移增塑”的调控方向:(1) 内在通过调整合金成分及温度,降低Mg的非基面与基面滑移系临界剪切应力比值,激发多系滑移,缓解塑性变形的各向异性;(2) 外在通过调控晶粒尺寸或引入可变形第二相,激活Mg基体位错滑移之外的塑性变形新机制,进一步实现镁合金塑性应变的高效协调。这为镁合金塑性、可加工性及成形性的提升提供了新思路,助力镁合金在高强塑性匹配方面发挥巨大潜能。

关键词 镁合金塑性变形强韧性位错多系滑移    
Abstract

Despite recent advancements in enhancing their absolute strength, magnesium alloys continue to face significant challenges due to their limited ductility and formability. This strength-ductility trade-off restricts the use of magnesium components in processing applications. This work explores the potential of improving the ductility of magnesium alloys by focusing on their crystal properties and plastic deformation mechanisms. The concept of multi-slips promoting ductility is proposed as a solution. By tailoring solute atoms and regulating the critical resolved shear stress ratios of basal and nonbasal slip systems through temperature adjustments, additional slip systems can be activated, thereby reducing plastic deformation anisotropy. External modifications, such as refining grain size or introducing deformable phases, can activate new plastic deformation mechanisms beyond dislocation slip. These adjustments offer methods to accommodate the plastic strain of magnesium alloys, presenting new perspectives for enhancing magnesium ductility and formability.

Key wordsmagnesium alloy    plastic deformation    strength and ductility    dislocation    multi-slip
收稿日期: 2024-10-29     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52425101);国家自然科学基金项目(52471012)
通讯作者: 曾小勤,xqzeng@sjtu.edu.cn,主要从事轻合金强韧化、耐蚀镁合金及材料智能设计等研究
Corresponding author: ZENG Xiaoqin, professor, Tel: (021)54740838, E-mail: xqzeng@sjtu.edu.cn
作者简介: 曾小勤,男,1974年生,教授,博士
图1  Mg单晶内的滑移及孪晶变形机制示意图
图2  Mg的基面滑移、扩散柱面滑移和波浪柱面滑移的变形晶粒有效剪切应变及应变协调能力[18]
图3  基于微柱压缩方法测定的Mg-Zn-Ca合金沿a轴压缩的应力-应变曲线;从前、后视角分析微柱表面滑移迹线的SEM像及晶体学取向示意图[45]
图4  多晶纯Mg及镁合金的微米级晶粒尺寸与室温拉伸断裂延伸率的对比统计图[23]
图5  Mg-6Al-1Ca合金的变形机制示意图[56]
1 Zeng X Q, Chen Y W, Wang J Y, et al. Research progress of high-performance rare earth magnesium alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2963
1 曾小勤, 陈义文, 王静雅 等. 高性能稀土镁合金研究新进展 [J]. 中国有色金属学报, 2021, 31: 2963
2 Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
2 沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
3 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
3 吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
4 Yang B B, Wang J, Li Y P, et al. Deformation mechanisms of dual-textured Mg-6.5Zn alloy with limited tension-compression yield asymmetry [J]. Acta Mater., 2023, 248: 118766
5 Chen Y W, Wang J Y, Zheng W S, et al. CALPHAD-guided design of Mg-Y-Al alloy with improved strength and ductility via regulating the LPSO phase [J]. Acta Mater., 2024, 263: 119521
6 Conrad H, Robertson W D. Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals [J]. JOM, 1957, 9(4): 503
7 Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
8 Zhu G M, Wang L Y, Zhou H, et al. Improving ductility of a Mg alloy via non-basal <a> slip induced by Ca addition [J]. Int. J. Plast., 2019, 120: 164
9 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
10 Yu M D, Cui Y C, Wang J Y, et al. Critical resolved shear stresses for slip and twinning in Mg-Y-Ca alloys and their effect on the ductility [J]. Int. J. Plast., 2023, 162: 103525
11 El Kadiri H, Barrett C D, Wang J, et al. Why are $\left\{ 10\bar{1}2 \right\}$ twins profuse in magnesium? [J]. Acta Mater., 2015, 85: 354
12 Wang J Y, Molina-Aldareguía J M, LLorca J. Effect of Al content on the critical resolved shear stress for twin nucleation and growth in Mg alloys [J]. Acta Mater., 2020, 188: 215
13 Sułkowski B, Chulist R. Twin-induced stability and mechanical properties of pure magnesium [J]. Mater. Sci. Eng., 2019, A749: 89
14 Wang T, Zha M, Gao Y P, et al. Deformation mechanisms in a novel multiscale hetero-structured Mg alloy with high strength-ductility synergy [J]. Int. J. Plast., 2023, 170: 103766
15 Ma E, Liu C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off [J]. Prog. Mater. Sci., 2024, 143: 101252
16 Li B, Zhang Q W, Mathaudhu S N. Basal-pyramidal dislocation lock in deformed magnesium [J]. Scr. Mater., 2017, 134: 37
17 Bertin N, Tomé C N, Beyerlein I J, et al. On the strength of dislocation interactions and their effect on latent hardening in pure magnesium [J]. Int. J. Plast., 2014, 62: 72
18 Orozco-Caballero A, Lunt D, Robson J D, et al. How magnesium accommodates local deformation incompatibility: A high-resolution digital image correlation study [J]. Acta Mater., 2017, 133: 367
19 Zeng Z R, Nie J F, Xu S W, et al. Super-formable pure magnesium at room temperature [J]. Nat. Commun., 2017, 8: 972
doi: 10.1038/s41467-017-01330-9 pmid: 29042555
20 Wang J, Yuan Y, Chen T, et al. Multi-solute solid solution behavior and its effect on the properties of magnesium alloys [J]. J. Magnes. Alloy., 2022, 10: 1786
21 Sandlöbes S, Friák M, Korte-Kerzel S, et al. A rare-earth free magnesium alloy with improved intrinsic ductility [J]. Sci. Rep., 2017, 7: 10458
doi: 10.1038/s41598-017-10384-0 pmid: 28874798
22 Yasi J A, Hector L G, Trinkle D R. First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties [J]. Acta Mater., 2010, 58: 5704
23 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716 pmid: 29371467
24 Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
25 Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Mater. Sci. Eng., 2007, A464: 8
26 Ma X, Zha M, Wang S Q, et al. A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries [J]. J. Magnes. Alloy., 2022, 10: 2889
27 Zha M, Zhang H M, Jia H L, et al. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al-7Mg alloy [J]. Int. J. Plast., 2021, 146: 103108
28 Dong Q, Luo Z, Zhu H, et al. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects [J]. J. Mater. Sci. Technol., 2018, 34: 1773
doi: 10.1016/j.jmst.2018.02.009
29 Wang C, Zhang H Y, Wang H Y, et al. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations [J]. Scr. Mater., 2013, 69: 445
30 Ding Z G, Zhao G X, Sun H, et al. Alloying effects on the plasticity of magnesium: Comprehensive analysis of influences of all five slip systems [J]. J. Phys.: Condens. Matter, 2020, 32: 015401
31 Garg P, Adlakha I, Solanki K N. Effect of solutes on ideal shear resistance and electronic properties of magnesium: A first-principles study [J]. Acta Mater., 2018, 153: 327
32 Zeng Y, Shi O L, Jiang B, et al. Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition [J]. J. Alloy. Compd., 2018, 764: 555
33 Liu Z R, Li D Y. The electronic origin of strengthening and ductilizing magnesium by solid solutes [J]. Acta Mater., 2015, 89: 225
34 Wu Z X, Curtin W A. Mechanism and energetics of <c + a> dislocation cross-slip in hcp metals [J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 11137
35 Shang S L, Wang W Y, Zhou B C, et al. Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys:A first-principles study of shear deformation [J]. Acta Mater., 2014, 67: 168
36 Ding Z G, Liu W, Sun H, et al. Origins and dissociation of pyramidal <c + a> dislocations in magnesium and its alloys [J]. Acta Mater., 2018, 146: 265
37 Sandlöbes S, Friák M, Zaefferer S, et al. The relation between ductility and stacking fault energies in Mg and Mg-Y alloys [J]. Acta Mater., 2012, 60: 3011
38 Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
39 Ma X L, Jiao Q, Kecskes L J, et al. Effect of basal precipitates on extension twinning and pyramidal slip: A micro-mechanical and electron microscopy study of a Mg-Al binary alloy [J]. Acta Mater., 2020, 189: 35
40 Wang L Y, Huang Z H, Wang H M, et al. Study of slip activity in a Mg-Y alloy by in situ high energy X-ray diffraction microscopy and elastic viscoplastic self-consistent modeling [J]. Acta Mater., 2018, 155: 138
41 Huang Z H, Wang L Y, Zhou B J, et al. Observation of non-basal slip in Mg-Y by in situ three-dimensional X-ray diffraction [J]. Scr. Mater., 2018, 143: 44
42 Sabat R K, Brahme A P, Mishra R K, et al. Ductility enhancement in Mg-0.2%Ce alloys [J]. Acta Mater., 2018, 161: 246
43 Liu Y, Li N, Arul Kumar M, et al. Experimentally quantifying critical stresses associated with basal slip and twinning in magnesium using micropillars [J]. Acta Mater., 2017, 135: 411
44 Lilleodden E. Microcompression study of Mg (0001) single crystal [J]. Scr. Mater., 2010, 62: 532
45 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
46 Wang J Y, Li N, Alizadeh R, et al. Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys [J]. Acta Mater., 2019, 170: 155
doi: 10.1016/j.actamat.2019.03.027
47 Wu J, Si S S, Takagi K, et al. Study of basal <a> and pyramidal<c + a> slips in Mg-Y alloys using micro-pillar compression [J]. Philos. Mag., 2020, 100: 1454
48 Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals [J]. Acta Mater., 2011, 59: 1986
49 Shin K S, Wang L F, Bian M Z, et al. Effects of temperature on critical resolved shear stresses of slip and twining in Mg single crystal via experimental and crystal plasticity modeling [J]. J. Magnes. Alloy., 2023, 11: 2027
50 Qi X X, Li Y X, Xu X Y, et al. Enhancing strength-ductility synergy in a Mg-Gd-Y-Zr alloy at sub-zero temperatures via high dislocation density and shearable precipitates [J]. J. Mater. Sci. Technol., 2023, 166: 123
doi: 10.1016/j.jmst.2023.05.029
51 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
52 Zhu G M, Wang L Y, Sun Y J, et al. Grain-size effect on the deformation of Mg-3Al-3Sn alloy: Experiments and elastic-viscoplastic self-consistent modeling [J]. Int. J. Plast., 2021, 143: 103018
53 Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed high-strength and low-alloyed magnesium alloy [J]. Mater. China, 2020, 39: 31
53 程仁山, 潘虎成, 谢东升 等. 新型高强度低合金化镁合金研究进展 [J]. 中国材料进展, 2020, 39: 31
54 Zheng R X, Du J P, Gao S, et al. Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
55 Liu B Y, Zhang Z, Liu F, et al. Rejuvenation of plasticity via deformation graining in magnesium [J]. Nat. Commun., 2022, 13: 1060
56 Zhu G M, Wang L Y, Wang J, et al. Highly deformable Mg-Al-Ca alloy with Al2Ca precipitates [J]. Acta Mater., 2020, 200: 236
57 Luo S Z, Wang L Y, Wang J Y, et al. Micro-compression of Al2Ca particles in a Mg-Al-Ca alloy [J]. Materialia, 2022, 21: 101300
58 Chen R, Sandlöbes S, Zeng X Q, et al. Room temperature deformation of LPSO structures by non-basal slip [J]. Mater. Sci. Eng., 2017, A682: 354
59 Li Q, Song J, Chen Y W, et al. In-situ TEM characterization of basal dislocations between nano-spaced long-period stacking ordered phases in MgYZn alloy [J]. Scr. Mater., 2023, 235: 115601
[1] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[2] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[3] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[4] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[5] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[6] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[7] 周生玉, 胡明昊, 李冲, 丁海民, 郭乾应, 刘永长. 一种 γ'/γ'' 相强化镍基高温合金的蠕变行为[J]. 金属学报, 2025, 61(2): 226-234.
[8] 王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
[9] 韩英, 吴雨航, 赵春禄, 张靖实, 李振民, 冉旭. 选区激光熔化成形Al-Si-Fe-Mn-Ni合金的高温蠕变行为[J]. 金属学报, 2025, 61(1): 154-164.
[10] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[11] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[12] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[13] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[14] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[15] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.