|
|
新型低合金含量烘烤硬化镁合金研究进展及展望 |
王慧远1,2,3( ), 孟昭元1,3, 贾海龙1,3, 徐新宇4( ), 花珍铭2 |
1 吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025 2 河北工业大学 材料科学与工程学院 天津 300130 3 吉林大学 未来科学国际合作联合实验室 长春 130012 4 香港大学 机械工程系 香港 999077 |
|
Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys |
WANG Huiyuan1,2,3( ), MENG Zhaoyuan1,3, JIA Hailong1,3, XU Xinyu4( ), HUA Zhenming2 |
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China 2 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China 3 International Center of Future Science, Jilin University, Changchun 130012, China 4 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China |
引用本文:
王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
Huiyuan WANG,
Zhaoyuan MENG,
Hailong JIA,
Xinyu XU,
Zhenming HUA.
Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 372-382.
1 |
Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
|
1 |
王慧远, 张 行, 徐新宇 等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
|
2 |
Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
2 |
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
|
3 |
Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
|
3 |
刘 勇, 曾 钢, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
|
4 |
Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
|
4 |
沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
|
5 |
Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
|
5 |
李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
|
6 |
Zhu G J, Wang S Q, Zha M, et al. Effect of rare earth element Ce on the bulk texture and mechanical anisotropy of as-extruded Mg-0.3Al-0.2Ca-0.5Mn alloy sheets [J]. Acta Metall. Sin., 2024, 60: 1079
|
6 |
朱桂杰, 王思清, 查 敏 等. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响 [J]. 金属学报, 2024, 60: 1079
doi: 10.11900/0412.1961.2024.00044
|
7 |
Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
|
8 |
Wang S Q, Zha M, Jia H L, et al. A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms [J]. J. Mater. Sci. Technol., 2025, 211: 303
doi: 10.1016/j.jmst.2024.06.002
|
9 |
Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloys Compd., 2020, 849: 156640
|
10 |
Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
|
11 |
Liu S, Wang C, Ning H, et al. Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy [J]. J. Magnesium Alloy., 2024, 12: 2863
|
12 |
Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
|
13 |
Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
|
14 |
Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4
pmid: 29955065
|
15 |
Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
|
16 |
Tang H. Automotive Vehicle Assembly Processes and Operations Management [M]. Warrendale: SAE International, 2017: 135
|
17 |
Shome M, Tumuluru M. Welding and Joining of Advanced High Strength Steels (AHSS) [M]. Cambridge: Woodhead Publishing, 2015: 23
|
18 |
Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Amsterdam: Elsevier, 2017: 260
|
19 |
Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of Iron [J]. Proc. Phys. Soc., 1949, 62A: 49
|
20 |
Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects [J]. Science, 1999, 286: 2317
pmid: 10600736
|
21 |
Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the natural ageing behavior and bake hardening response of a pre-aged Al-Mg-Si-Cu alloy [J]. Acta Metall. Sin., 2019, 55: 1395
|
21 |
朱 上, 李志辉, 闫丽珍 等. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响 [J]. 金属学报, 2019, 55: 1395
|
22 |
Wang H, Shi W, He Y L, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels [J]. Acta Metall. Sin., 2011, 47: 263
doi: 10.3724/SP.J.1037.2010.00693
|
22 |
王 华, 史 文, 何燕霖 等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究 [J]. 金属学报, 2011, 47: 263
|
23 |
Bryant J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J]. Metall. Mater. Trans., 1999, 30: 1999
|
24 |
Hou Z R, Opitz T, Xiong X C, et al. Bake-partitioning in a press-hardening steel [J]. Scr. Mater., 2019, 162: 492
|
25 |
Aruga Y, Kozuka M, Takaki Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 116: 82
|
26 |
Soenen B, De A K, Vandeputte S, et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Mater., 2004, 52: 3483
|
27 |
Hu W W, Yang Z Q, Ye H Q. Cottrell atmospheres along dislocations in long-period stacking ordered phases in a Mg-Zn-Y alloy [J]. Scr. Mater., 2016, 117: 77
|
28 |
Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
|
29 |
Xiao L R, Chen X F, Wei K, et al. Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy [J]. Scr. Mater., 2021, 191: 219
|
30 |
Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
|
31 |
Hua Z M, Zha M, Meng Z Y, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 21
|
32 |
Li Y J, Fang Y, Wang C, et al. Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg-2Zn-0.5Ca alloy [J]. Mater. Sci. Eng., 2022, A831: 142239
|
33 |
Meng Z Y, Wang C, Hua Z M, et al. Achieving extraordinary thermal stability of fine-grained structure in a dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 797
|
34 |
Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
|
35 |
Klos A, Kellner S, Wortberg D, et al. Forming characteristics of artificial aging Al-Mg-Si-Cu sheet alloys [J]. AIP Conf. Proc., 2017, 1896: 020020
|
36 |
Tan S K, Pan X W, Li M, et al. Summary of steel sheet in Cherry Car Co. [J]. Automob. Technol. Mater., 2004, (6): 59
|
36 |
谭善锟, 潘兴旺, 李 明 等. 奇瑞轿车用钢板 [J]. 汽车工艺与材料, 2004, (6): 59
|
37 |
Yang M, Jia H L, Jiang R, et al. Excellent synergy of formability and strength of a Mg-Zn-Y-Ca-Zr alloy by tailoring segregation-assisted weak elliptical ring texture [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.06.029
|
38 |
Lejček P. Grain Boundary Segregation in Metals [M]. Berlin: Springer, 2010: 25
|
39 |
Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369
pmid: 23704567
|
40 |
He C, Li Z Q, Chen H W, et al. Unusual solute segregation phenomenon in coherent twin boundaries [J]. Nat. Commun., 2021, 12: 722
doi: 10.1038/s41467-021-21104-8
pmid: 33526770
|
41 |
Zhu Y M, Xu S W, Nie J F. $\left\{ 10\bar{1}1 \right\}$ twin boundary structures in a Mg-Gd alloy [J]. Acta Mater., 2018, 143: 1
|
42 |
Somekawa H, Watanabe H, Basha D A, et al. Effect of twin boundary segregation on damping properties in magnesium alloy [J]. Scr. Mater., 2017, 129: 35
|
43 |
Zhou X Z, Su H H, Ye H Q, et al. Removing basal-dissociated<c + a> dislocations by $\left\{ 10\bar{1}2 \right\}$ deformation twinning in magnesium alloys [J]. Acta Mater., 2021, 217: 117170
|
44 |
Wang C, Ju H, Li M X, et al. Segregation potency at $\left\{ 10\bar{1}2 \right\}$ and $\left\{ 10\bar{1}1 \right\}$ twin boundaries in Mg with Zn and Ca co-addition: A first-principles study [J]. Materialia, 2021, 15: 101031
|
45 |
Wang X, Hu Y, Yu K H, et al. Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy [J]. Scr. Mater., 2022, 209: 114375
|
46 |
Zhang H, Li Y X, Ding Z G, et al. Origin of twin-like $\left\{ 33\bar{6}4 \right\}$ tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy [J]. Scr. Mater., 2021, 201: 113982
|
47 |
Su H H, Zheng S J, Yang Z Q, et al. Atomic-scale insights into grain boundary-mediated plasticity mechanisms in a magnesium alloy subjected to cyclic deformation [J]. Acta Mater., 2024, 277: 120210
|
48 |
Chen X F, Xiao L R, Ding Z G, et al. Atomic segregation at twin boundaries in a Mg-Ag alloy [J]. Scr. Mater., 2020, 178: 193
|
49 |
Somekawa H, Tsuru T, Naito K, et al. Control of twin boundary mobility by solute segregation in Mg binary alloys [J]. Scr. Mater., 2024, 249: 116173
|
50 |
Yang Q, Lv S H, Chen P, et al. Formation and solute segregation for an asymmetric tilt boundary on $\left\{ 10\bar{1}2 \right\}$ twin boundaries [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.01.026
|
51 |
Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
|
52 |
Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
|
53 |
Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
|
54 |
Lee Y S, Koh D H, Kim H W, et al. Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment [J]. Scr. Mater., 2018, 147: 45
|
55 |
Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys [J]. Scr. Mater., 1997, 37: 1475
|
56 |
Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
|
57 |
Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
|
58 |
Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
|
59 |
Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
|
60 |
Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
|
61 |
Nakata T, Mezaki T, Ajima R, et al. High-speed extrusion of heat-treatable Mg-Al-Ca-Mn dilute alloy [J]. Scr. Mater., 2015, 101: 28
|
62 |
Nakata T, Xu C, Matsumoto Y, et al. Optimization of Mn content for high strengths in high-speed extruded Mg-0.3Al-0.3Ca (wt%) dilute alloy [J]. Mater. Sci. Eng., 2016, 673A: 443
|
63 |
Nakata T, Xu C, Ajima R, et al. Improving mechanical properties and yield asymmetry in high-speed extrudable Mg-1.1Al-0.24Ca (wt%) alloy by high Mn addition [J]. Mater. Sci. Eng., 2018, A712: 12
|
64 |
Bian M Z, Zeng Z R, Xu S W, et al. Improving formability of Mg-Ca-Zr sheet alloy by microalloying of Zn [J]. Adv. Eng. Mater., 2016, 18: 1763
|
65 |
Nakata T, Xu C, Yoshida Y, et al. Improving room-temperature stretch formability of a high-alloyed Mg-Al-Ca-Mn alloy sheet by a high-temperature solution-treatment [J]. Mater. Sci. Eng., 2021, A801: 140399
|
66 |
Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 239: 118223
|
67 |
Cheng D, Hoglund E R, Wang K, et al. Atomic structures of ordered monolayer GP zones in Mg-Zn-X (X = Ca, Nd) systems [J]. Scr. Mater., 2022, 216: 114744
|
68 |
Li Z H, Cheng D, Wang K, et al. Revisited precipitation process in dilute Mg-Ca-Zn alloys [J]. Acta Mater., 2023, 257: 119072
|
69 |
Meng Z Y, Jia H L, Ju H, et al. Enhanced age-hardening in a lean Mg-Al-Ca-Mn alloy by trace silver addition [J]. Mater. Res. Lett., 2025
|
70 |
Li Z H, Sasaki T T, Shiroyama T, et al. Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy [J]. Mater. Res. Lett., 2020, 8: 335
|
71 |
Bhattacharyya J J, Sasaki T T, Nakata T, et al. Determining the strength of GP zones in Mg alloy AXM10304, both parallel and perpendicular to the zone [J]. Acta Mater., 2019, 171: 231
doi: 10.1016/j.actamat.2019.04.035
|
72 |
Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
|
73 |
Bhattacharyya J J, Sasaki T T, Nakata T, et al. Why rolled Mg-Al-Ca-Mn alloys are less responsive to aging as compared to the extruded [J]. Scr. Mater., 2023, 233: 115513
|
74 |
Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
|
75 |
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|