Please wait a minute...
金属学报  2025, Vol. 61 Issue (3): 372-382    DOI: 10.11900/0412.1961.2024.00370
  综述 本期目录 | 过刊浏览 |
新型低合金含量烘烤硬化镁合金研究进展及展望
王慧远1,2,3(), 孟昭元1,3, 贾海龙1,3, 徐新宇4(), 花珍铭2
1 吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
2 河北工业大学 材料科学与工程学院 天津 300130
3 吉林大学 未来科学国际合作联合实验室 长春 130012
4 香港大学 机械工程系 香港 999077
Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys
WANG Huiyuan1,2,3(), MENG Zhaoyuan1,3, JIA Hailong1,3, XU Xinyu4(), HUA Zhenming2
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
2 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
3 International Center of Future Science, Jilin University, Changchun 130012, China
4 Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
引用本文:

王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
Huiyuan WANG, Zhaoyuan MENG, Hailong JIA, Xinyu XU, Zhenming HUA. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. Acta Metall Sin, 2025, 61(3): 372-382.

全文: PDF(2791 KB)   HTML
摘要: 

镁合金作为最轻的工程结构金属材料,在航空航天、汽车、轨道交通等领域展现出广阔的应用前景。然而,在确保成型性的同时提高强度是制约低合金含量镁合金应用的瓶颈问题。烘烤硬化处理通过充分利用有限的固溶原子,在一定程度上突破了低合金含量镁合金成型性与强度之间的矛盾。本工作分别从位错偏聚、孪晶界偏聚、Guinier-Preston (GP)区诱导烘烤硬化3种机制出发,概述了低合金含量烘烤硬化镁合金的研究进展,并从扩展应用范围的角度展望了低合金含量烘烤硬化镁合金的发展趋势。

关键词 镁合金低合金含量烘烤硬化溶质偏聚GP区    
Abstract

Magnesium alloys are widely used in aerospace, automotive, and rail transit industries as the lightest structural metallic materials. Minor alloying additions have proven to be effective in enhancing processability and ductility. Recent studies demonstrate that low-alloyed Mg-Zn-Ca(-Al) alloys exhibit exceptional room-temperature formability due to their weak texture after rolling and annealing. This advancement indicates that magnesium alloy sheets could potentially replace steel and aluminum alloy in body panel applications. However, achieving improved strength while maintaining formability remains a substantial challenge, limiting the broader adoption of low-alloyed magnesium alloys. Bake hardening (BH) treatment, a technique commonly employed for steel and Al body panels to enhance post-forming strength, has recently been shown to strengthen Mg-Zn-Ca(-Al) alloy sheets. BH treatment partially addresses the trade-off between formability and strength in low-alloyed magnesium alloys by utilizing the limited solid solution atoms. As the development of BH magnesium alloy sheets progresses, further improvements in properties or the design of new alloy compositions require a thorough understanding of the relationship between microstructure and mechanical properties and the underlying mechanisms. This review examines recent advancements in low-alloyed bake-hardenable magnesium alloys, focusing on three mechanisms: dislocation segregation, twin boundary segregation, and Guinier-Preston (GP) zone-induced bake hardening. Additionally, it provides a brief outlook on the future development trends aimed at expanding the application range of these materials. The insights presented here are expected to guide the design and optimization of BH magnesium alloys with enhanced performance and broader industrial applicability.

Key wordsmagnesium alloy    low alloying    bake-hardening    solute segregation    GP zone
收稿日期: 2024-11-04     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52334010);国家自然科学基金项目(52271103)
通讯作者: 王慧远,wanghuiyuan@hebut.edu.cn,主要从事高强韧轻合金设计与制备研究;
徐新宇,xinyuxu@connect.hku.hk,主要从事金属材料变形行为的研究
Corresponding author: WANG Huiyuan, professor, Tel: (022)60201981, E-mail: wanghuiyuan@hebut.edu.cn;
XU Xinyu, Tel: (022)60201981, E-mail: xinyuxu@connect.hku.hk
作者简介: 王慧远,男,1974年生,教授,博士
图1  2%拉伸预应变态和烘烤硬化态AZMX1110合金的透射电镜-三维原子探针(TEM-APT)联用表征结果[15]
图2  退火态、直接时效态、预应变态和烘烤硬化态的ZXTM1000合金的拉伸工程应力-应变曲线及烘烤硬化态样品与其他镁合金的屈服强度、断裂应变对比图[31]
AlloyProcessing

YS

MPa

UTS

MPa

EL

%

BH mechanismRef.
Mg-1.0Zn-0.45Ca-0.33Sn-0.2MnAnnealed26529124.6Solute segregation at dislocations[31]
BH29730121.9
Mg-2.0Zn-0.5CaT49520812.0

Solute segregation at dislocations

and twin boundaries

[32]
BH20024417.0
Mg-1.61Zn-0.57Mn-0.54Ca-0.46AlT423428821.1GP zone strengthening[33]
BH29331619.2
AA6016 Al alloyPA12223427.8Mg-Si cluster strengthening[34]
BH22329122.7
AA6111 Al alloyT415026819.2 (UL)Precipitate strengthening

[35]

PFHT28032510.9 (UL)
BH28933110.5 (UL)
B180H1 SteelBH24135238.0Solute segregation at dislocations[36]
表1  低合金含量烘烤硬化镁合金与烘烤硬化钢/铝合金的力学性能[31~36]
图3  预应变态ZXTM1000合金原位加热过程中的HAADF-STEM像及EDS分析[31]
图4  Mg-4.7Zn合金和压缩退火后Mg-6.1Gd-1.0Zn-0.7Zr合金孪晶界上的周期性溶质偏聚[39]
图5  烘烤硬化态Mg-2.0Zn-0.5Ca合金的TEM分析[32]
图6  固溶态和烘烤硬化态Mg-1.61Zn-0.57Mn-0.54Ca-0.46Al (ZMXA2110)合金TEM和APT分析及力学性能[33]
1 Wang H Y, Zhang H, Xu X Y, et al. Current research and future prospect on microstructure stability of superplastic light alloys [J]. Acta Metall. Sin., 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
1 王慧远, 张 行, 徐新宇 等. 超塑性轻合金组织稳定性的研究进展及展望 [J]. 金属学报, 2018, 54: 1618
doi: 10.11900/0412.1961.2018.00391
2 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
2 王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
3 Liu Y, Zeng G, Liu H, et al. Grain refinement mechanism and research progress of magnesium alloy incorporating Zr [J]. Acta Metall. Sin., 2024, 60: 129
doi: 10.11900/0412.1961.2023.00241
3 刘 勇, 曾 钢, 刘 洪 等. 含Zr镁合金晶粒细化机理与研究进展 [J]. 金属学报, 2024, 60: 129
4 Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
4 沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
5 Li J R, Xie D S, Zhang D D, et al. Microstructure evolution mechanism of new low-alloyed high-strength Mg-0.2Ce-0.2Ca alloy during extrusion [J]. Acta Metall. Sin., 2023, 59: 1087
5 李景仁, 谢东升, 张栋栋 等. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理 [J]. 金属学报, 2023, 59: 1087
doi: 10.11900/0412.1961.2022.00290
6 Zhu G J, Wang S Q, Zha M, et al. Effect of rare earth element Ce on the bulk texture and mechanical anisotropy of as-extruded Mg-0.3Al-0.2Ca-0.5Mn alloy sheets [J]. Acta Metall. Sin., 2024, 60: 1079
6 朱桂杰, 王思清, 查 敏 等. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响 [J]. 金属学报, 2024, 60: 1079
doi: 10.11900/0412.1961.2024.00044
7 Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
8 Wang S Q, Zha M, Jia H L, et al. A review of superplastic magnesium alloys: Focusing on alloying strategy, grain structure control and deformation mechanisms [J]. J. Mater. Sci. Technol., 2025, 211: 303
doi: 10.1016/j.jmst.2024.06.002
9 Zhao L Q, Wang C, Chen J C, et al. Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization [J]. J. Alloys Compd., 2020, 849: 156640
10 Xia N, Wang C, Gao Y P, et al. Enhanced ductility of Mg-1Zn-0.2Zr alloy with dilute Ca addition achieved by activation of non-basal slip and twinning [J]. Mater. Sci. Eng., 2021, A813: 141128
11 Liu S, Wang C, Ning H, et al. Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy [J]. J. Magnesium Alloy., 2024, 12: 2863
12 Zeng Z R, Zhu Y M, Xu S W, et al. Texture evolution during static recrystallization of cold-rolled magnesium alloys [J]. Acta Mater., 2016, 105: 479
13 Bian M Z, Sasaki T T, Suh B C, et al. A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability [J]. Scr. Mater., 2017, 138: 151
14 Trang T T T, Zhang J H, Kim J H, et al. Designing a magnesium alloy with high strength and high formability [J]. Nat. Commun., 2018, 9: 2522
doi: 10.1038/s41467-018-04981-4 pmid: 29955065
15 Bian M Z, Sasaki T T, Nakata T, et al. Bake-hardenable Mg-Al-Zn-Mn-Ca sheet alloy processed by twin-roll casting [J]. Acta Mater., 2018, 158: 278
16 Tang H. Automotive Vehicle Assembly Processes and Operations Management [M]. Warrendale: SAE International, 2017: 135
17 Shome M, Tumuluru M. Welding and Joining of Advanced High Strength Steels (AHSS) [M]. Cambridge: Woodhead Publishing, 2015: 23
18 Rana R, Singh S B. Automotive Steels: Design, Metallurgy, Processing and Applications [M]. Amsterdam: Elsevier, 2017: 260
19 Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of Iron [J]. Proc. Phys. Soc., 1949, 62A: 49
20 Blavette D, Cadel E, Fraczkiewicz A, et al. Three-dimensional atomic-scale imaging of impurity segregation to line defects [J]. Science, 1999, 286: 2317
pmid: 10600736
21 Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the natural ageing behavior and bake hardening response of a pre-aged Al-Mg-Si-Cu alloy [J]. Acta Metall. Sin., 2019, 55: 1395
21 朱 上, 李志辉, 闫丽珍 等. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响 [J]. 金属学报, 2019, 55: 1395
22 Wang H, Shi W, He Y L, et al. Study of Mn and P solute distributions and their effect on the tensile behavior in ultra low carbon bake hardening steels [J]. Acta Metall. Sin., 2011, 47: 263
doi: 10.3724/SP.J.1037.2010.00693
22 王 华, 史 文, 何燕霖 等. Mn和P在超低碳烘烤硬化钢中的分布形态及其对拉伸行为的影响研究 [J]. 金属学报, 2011, 47: 263
23 Bryant J D. The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet [J]. Metall. Mater. Trans., 1999, 30: 1999
24 Hou Z R, Opitz T, Xiong X C, et al. Bake-partitioning in a press-hardening steel [J]. Scr. Mater., 2019, 162: 492
25 Aruga Y, Kozuka M, Takaki Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy [J]. Scr. Mater., 2016, 116: 82
26 Soenen B, De A K, Vandeputte S, et al. Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra low carbon bake hardening steels [J]. Acta Mater., 2004, 52: 3483
27 Hu W W, Yang Z Q, Ye H Q. Cottrell atmospheres along dislocations in long-period stacking ordered phases in a Mg-Zn-Y alloy [J]. Scr. Mater., 2016, 117: 77
28 Xiao L R, Chen X F, Cao Y, et al. Solute segregation assisted nanocrystallization of a cold-rolled Mg-Ag alloy during annealing [J]. Scr. Mater., 2020, 177: 69
29 Xiao L R, Chen X F, Wei K, et al. Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy [J]. Scr. Mater., 2021, 191: 219
30 Hua Z M, Li M X, Wang C, et al. Pre-strain mediated fast natural aging in a dilute Mg-Zn-Ca-Sn-Mn alloy [J]. Scr. Mater., 2021, 200: 113924
31 Hua Z M, Zha M, Meng Z Y, et al. Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 21
32 Li Y J, Fang Y, Wang C, et al. Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg-2Zn-0.5Ca alloy [J]. Mater. Sci. Eng., 2022, A831: 142239
33 Meng Z Y, Wang C, Hua Z M, et al. Achieving extraordinary thermal stability of fine-grained structure in a dilute magnesium alloy [J]. Mater. Res. Lett., 2022, 10: 797
34 Zhu S Q, Shih H C, Cui X Y, et al. Design of solute clustering during thermomechanical processing of AA6016 Al-Mg-Si alloy [J]. Acta Mater., 2021, 203: 116455
35 Klos A, Kellner S, Wortberg D, et al. Forming characteristics of artificial aging Al-Mg-Si-Cu sheet alloys [J]. AIP Conf. Proc., 2017, 1896: 020020
36 Tan S K, Pan X W, Li M, et al. Summary of steel sheet in Cherry Car Co. [J]. Automob. Technol. Mater., 2004, (6): 59
36 谭善锟, 潘兴旺, 李 明 等. 奇瑞轿车用钢板 [J]. 汽车工艺与材料, 2004, (6): 59
37 Yang M, Jia H L, Jiang R, et al. Excellent synergy of formability and strength of a Mg-Zn-Y-Ca-Zr alloy by tailoring segregation-assisted weak elliptical ring texture [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.06.029
38 Lejček P. Grain Boundary Segregation in Metals [M]. Berlin: Springer, 2010: 25
39 Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
doi: 10.1126/science.1229369 pmid: 23704567
40 He C, Li Z Q, Chen H W, et al. Unusual solute segregation phenomenon in coherent twin boundaries [J]. Nat. Commun., 2021, 12: 722
doi: 10.1038/s41467-021-21104-8 pmid: 33526770
41 Zhu Y M, Xu S W, Nie J F. $\left\{ 10\bar{1}1 \right\}$ twin boundary structures in a Mg-Gd alloy [J]. Acta Mater., 2018, 143: 1
42 Somekawa H, Watanabe H, Basha D A, et al. Effect of twin boundary segregation on damping properties in magnesium alloy [J]. Scr. Mater., 2017, 129: 35
43 Zhou X Z, Su H H, Ye H Q, et al. Removing basal-dissociated<c + a> dislocations by $\left\{ 10\bar{1}2 \right\}$ deformation twinning in magnesium alloys [J]. Acta Mater., 2021, 217: 117170
44 Wang C, Ju H, Li M X, et al. Segregation potency at $\left\{ 10\bar{1}2 \right\}$ and $\left\{ 10\bar{1}1 \right\}$ twin boundaries in Mg with Zn and Ca co-addition: A first-principles study [J]. Materialia, 2021, 15: 101031
45 Wang X, Hu Y, Yu K H, et al. Room temperature deformation-induced solute segregation and its impact on twin boundary mobility in a Mg-Y alloy [J]. Scr. Mater., 2022, 209: 114375
46 Zhang H, Li Y X, Ding Z G, et al. Origin of twin-like $\left\{ 33\bar{6}4 \right\}$ tilt boundary and associated solute segregation in a high strain rate deformed Mg-Y alloy [J]. Scr. Mater., 2021, 201: 113982
47 Su H H, Zheng S J, Yang Z Q, et al. Atomic-scale insights into grain boundary-mediated plasticity mechanisms in a magnesium alloy subjected to cyclic deformation [J]. Acta Mater., 2024, 277: 120210
48 Chen X F, Xiao L R, Ding Z G, et al. Atomic segregation at twin boundaries in a Mg-Ag alloy [J]. Scr. Mater., 2020, 178: 193
49 Somekawa H, Tsuru T, Naito K, et al. Control of twin boundary mobility by solute segregation in Mg binary alloys [J]. Scr. Mater., 2024, 249: 116173
50 Yang Q, Lv S H, Chen P, et al. Formation and solute segregation for an asymmetric tilt boundary on $\left\{ 10\bar{1}2 \right\}$ twin boundaries [J]. J. Magnes. Alloy., 2024, DOI: 10.1016/j.jma.2024.01.026
51 Li Z H, Sasaki T T, Bian M Z, et al. Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys [J]. J. Alloys Compd., 2020, 847: 156347
52 Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
53 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
54 Lee Y S, Koh D H, Kim H W, et al. Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment [J]. Scr. Mater., 2018, 147: 45
55 Nie J F, Muddle B C. Precipitation hardening of Mg-Ca(-Zn) alloys [J]. Scr. Mater., 1997, 37: 1475
56 Oh-ishi K, Watanabe R, Mendis C L, et al. Age-hardening response of Mg-0.3at.%Ca alloys with different Zn contents [J]. Mater. Sci. Eng., 2009, A526: 177
57 Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scr. Mater., 2010, 63: 831
58 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
59 Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
60 Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
61 Nakata T, Mezaki T, Ajima R, et al. High-speed extrusion of heat-treatable Mg-Al-Ca-Mn dilute alloy [J]. Scr. Mater., 2015, 101: 28
62 Nakata T, Xu C, Matsumoto Y, et al. Optimization of Mn content for high strengths in high-speed extruded Mg-0.3Al-0.3Ca (wt%) dilute alloy [J]. Mater. Sci. Eng., 2016, 673A: 443
63 Nakata T, Xu C, Ajima R, et al. Improving mechanical properties and yield asymmetry in high-speed extrudable Mg-1.1Al-0.24Ca (wt%) alloy by high Mn addition [J]. Mater. Sci. Eng., 2018, A712: 12
64 Bian M Z, Zeng Z R, Xu S W, et al. Improving formability of Mg-Ca-Zr sheet alloy by microalloying of Zn [J]. Adv. Eng. Mater., 2016, 18: 1763
65 Nakata T, Xu C, Yoshida Y, et al. Improving room-temperature stretch formability of a high-alloyed Mg-Al-Ca-Mn alloy sheet by a high-temperature solution-treatment [J]. Mater. Sci. Eng., 2021, A801: 140399
66 Schäublin R E, Becker M, Cihova M, et al. Precipitation in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 239: 118223
67 Cheng D, Hoglund E R, Wang K, et al. Atomic structures of ordered monolayer GP zones in Mg-Zn-X (X = Ca, Nd) systems [J]. Scr. Mater., 2022, 216: 114744
68 Li Z H, Cheng D, Wang K, et al. Revisited precipitation process in dilute Mg-Ca-Zn alloys [J]. Acta Mater., 2023, 257: 119072
69 Meng Z Y, Jia H L, Ju H, et al. Enhanced age-hardening in a lean Mg-Al-Ca-Mn alloy by trace silver addition [J]. Mater. Res. Lett., 2025
70 Li Z H, Sasaki T T, Shiroyama T, et al. Simultaneous achievement of high thermal conductivity, high strength and formability in Mg-Zn-Ca-Zr sheet alloy [J]. Mater. Res. Lett., 2020, 8: 335
71 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Determining the strength of GP zones in Mg alloy AXM10304, both parallel and perpendicular to the zone [J]. Acta Mater., 2019, 171: 231
doi: 10.1016/j.actamat.2019.04.035
72 Bhattacharyya J J, Nakata T, Kamado S, et al. Origins of high strength and ductility combination in a Guinier-Preston zone containing Mg-Al-Ca-Mn alloy [J]. Scr. Mater., 2019, 163: 121
73 Bhattacharyya J J, Sasaki T T, Nakata T, et al. Why rolled Mg-Al-Ca-Mn alloys are less responsive to aging as compared to the extruded [J]. Scr. Mater., 2023, 233: 115513
74 Stanford N, Barnett M R. Solute strengthening of prismatic slip, basal slip and $\left\{ 10\bar{1}2 \right\}$ twinning in Mg and Mg-Zn binary alloys [J]. Int. J. Plast., 2013, 47: 165
75 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
[1] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[2] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[3] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[4] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[5] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[6] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[7] 王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
[8] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[9] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[10] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[11] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[12] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[13] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[14] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[15] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.