Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1153-1164    DOI: 10.11900/0412.1961.2023.00461
  研究论文 本期目录 | 过刊浏览 |
基于原位电阻法的7A65铝合金厚板双级时效工艺
肖文龙1,2,3(), 臧晨阳2,3, 郭锦涛2,3, 冯佳文1, 马朝利1,2,3
1.天目山实验室 杭州 311115
2.北京航空航天大学 材料科学与工程学院 北京 100191
3.北京航空航天大学 云南创新研究院 昆明 650233
Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method
XIAO Wenlong1,2,3(), ZANG Chenyang2,3, GUO Jintao2,3, FENG Jiawen1, MA Chaoli1,2,3
1.Tianmushan Laboratory, Hangzhou 311115, China
2.School of Materials Science and Engineering, Beihang University, Beijing 100191, China
3.Yunnan Innovation Institute, Beihang University, Kunming 650233, China
引用本文:

肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
Wenlong XIAO, Chenyang ZANG, Jintao GUO, Jiawen FENG, Chaoli MA. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. Acta Metall Sin, 2025, 61(8): 1153-1164.

全文: PDF(4712 KB)   HTML
摘要: 

7xxx系超高强铝合金厚板凭借其轻质、高比强度等优点被广泛应用于航空航天等领域。为了优化7A65铝合金厚板的双级时效工艺,本工作利用原位电阻分析法系统分析了7A65铝合金的时效析出行为,制定了合金的双级时效工艺,并通过组织观察及力学性能测试探讨了时效工艺对厚板力学性能的影响规律及板材的强韧化机制。合金的等温转变(TTT)曲线表明,在120~220 ℃内出现了η相的脱溶“C曲线”。根据TTT曲线确定板材的最佳双级时效工艺为:121 ℃、6 h + 152 ℃、19 h,经此时效工艺处理后板材具有39%IACS以上的电导率和550 MPa以上的屈服强度,同时延伸率达到9%。

关键词 7A65铝合金双级时效析出动力学微观组织力学性能    
Abstract

With the increasing scarcity of traditional energy sources such as petroleum, the concept of sustainable development has prompted strict demands for energy-saving, economical, and environment-friendly industrial production. As the most important lightweight structural material, the requirements for aluminum alloys in modern industries are also increasing. In particular, 7xxx-series ultrahigh-strength aluminum alloy thick plates have been widely used in aerospace and other fields due to its advantages of lightweight and high specific strength. Currently, the problem of nonuniformity of microstructure and mechanical properties in the thickness direction of the thick plates is still prominent. Therefore, developing a new aging process to overcome the shortcomings of the low efficiency of traditional aging processes and difficult-to-control temperature field is urgently needed. Additionally, the research on aging heat treatment mainly focuses on the performance test and static microstructure characterization. Fewer research works have been carried out on the real-time detection of the transformation of the aging dissolution phase byin situ means. To optimize the two-stage aging process of a 7A65 aluminum alloy thick plate, this study systematically analyzed the aging precipitation behavior of the alloy by in situ electrical resistance analysis, formulated the two-stage aging process of the alloy, and explored the influence law of the aging process on the mechanical properties of the thick plate. The study also explored the strengthening and toughening mechanism of the plate through the microstructure observation and mechanical property test. The isothermal transition curve (i.e., time-temperature-transformation (TTT) curve) of the alloy shows that the “C curve” of η-phase dissolution is observed at 120-220 oC. According to the TTT curve, the optimal conditions for the two-stage aging process for the thick plate are determined to be as follows: heat at 121 oC for 6 h, and then at 152 oC for 19 h. After aging, the electrical conductivity of the plate is higher than 38%IACS, the yield strength is higher than 550 MPa, and the elongation reaches 9%.

Key words7A65 aluminum alloy    two-stage aging    precipitation kinetics    microstructure    mechanical property
收稿日期: 2023-11-28     
ZTFLH:  TG 166.3  
基金资助:浙江省重点研发计划项目(2024SSYS0078);西南铝业(集团)有限责任公司配套项目(JZKG20190099)
通讯作者: 肖文龙,wlxiao@buaa.edu.cn,主要从事轻质高强金属结构/功能材料制备技术研究
Corresponding author: XIAO Wenlong, associate professor, Tel: (010)82338631, E-mail: wlxiao@buaa.edu.cn
作者简介: 肖文龙,男,1982年生,博士
图1  原位电阻测试装置示意图
图2  拉伸试样的取样位置和试样尺寸示意图
图3  等温时效过程中7A65铝合金板材表面及不同厚度(H)处试样的等温转变(TTT)曲线
图4  不同温度下7A65铝合金板材表层、H / 4和H / 2处试样的析出动力学曲线

Temperature

oC

SurfaceH / 4H / 2
KnKnKn
1200.090.730.090.790.110.76
1400.140.800.130.830.140.82
1600.220.810.270.710.240.78
1800.410.640.380.580.320.56
2000.410.730.580.680.510.68
2200.770.730.900.760.780.77
表1  不同温度下7A65铝合金板材表层及不同厚度处试样析出动力学曲线的拟合系数(K和n)
图5  140 ℃等温时效过程中7A65铝合金板材表层试样晶内析出相的TEM明场像选区电子衍射(SAED)花样及析出相平均等效直径和体积分数
图6  140 ℃等温时效过程中7A56铝合金板材表层试样晶界处的TEM像和HRTEM像
图7  基于TTT权重曲线确定的7A65铝合金板材的双级时效工艺窗口
图8  7A65铝合金板材不同厚度处不同双级时效工艺的硬度和电导率对比及最佳双级时效工艺下的拉伸性能
图9  140 ℃时效23 h后7A65铝合金板材表层处试样晶内析出相的HRTEM像和快速Fourier变换
图10  最佳双级时效工艺下7A65铝合金板材不同厚度的轧向(RD)工程应力-应变曲线及对应的数字图像相关处理技术(DIC)分析
[1] Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
[2] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Mater. Sci. Eng., 2000, A280: 102
[3] Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2003
[4] Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
[5] Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment [J]. Acta. Metall. Sin., 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
[5] 韩宝帅, 魏立军, 徐严谨 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响 [J]. 金属学报, 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
[6] Mishra R S, Komarasamy M. Friction Stir Welding of High Strength 7XXX Aluminum Alloys [M]. Oxford: Butterworth-Heinemann, 2016: 5
[7] Zuo J R, Hou L G, Shi J T, et al. Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing [J]. J. Alloys Compd., 2017, 716: 220
[8] Xiao Y P, Pan Q L, Li W B, et al. Influence of heat treatment on corrosion behaviour of Al-Zn-Mg-Cu-Zr-Sc alloy [J]. Mater. Corros., 2012, 63: 421
[9] Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050 [J]. Mater. Sci. Eng., 2008, A492: 1
[10] Tang J, Liu M C, Bo G W, et al. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116: 130
doi: 10.1016/j.jmst.2021.12.008
[11] Zhang Z, Deng Y L, Ye L Y, et al. Effect of multi-stage aging treatments on the precipitation and mechanical properties of Al-Zn-Mg alloys [J]. Mater. Sci. Eng., 2020, A785: 139394
[12] Li M H, Yang Y Q, Feng Z Q, et al. Precipitation sequence of η phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy during artificial aging [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2061
[13] Yang J L, Deng Y L, Qi X H, et al. Precipitation kinetics of second-phase particles in supersaturated solid solution of 7050 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2012, 43: 2528
[13] 杨金龙, 邓运来, 祁小红 等. 过饱和7050铝合金固溶体中第二相粒子的析出动力学[J]. 中南大学学报(自然科学版), 2012, 43: 2528
[14] Wu S Z, Yi Y P, Huang S Q, et al. Research on quench sensitivity and microstructure analysis of 7050 aluminum alloy [J]. Acta Metall. Sin., 2016, 52: 1503
[14] 吴书舟, 易幼平, 黄始全 等. 7050铝合金淬火敏感性研究和微观组织分析 [J]. 金属学报, 2016, 52: 1503
doi: 10.11900/0412.1961.2016.00050
[15] Liu J Z, Chen J H, Yang X B, et al. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy [J]. Scr. Mater., 2010, 63: 1061
[16] Jiang F L, Zurob H S, Purdy G R, et al. Characterizing precipitate evolution of an Al-Zn-Mg-Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring [J]. Mater. Charact., 2016, 117: 47
[17] Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress [J]. Acta Mater., 1998, 47: 293
[18] Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
[19] Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
[20] Li C, Chen Z, Zhang X Q, et al. Hot deformation behavior of high Zn-containing 7A65 Al alloy [J]. Rare Met., 2023, 42: 302
[21] Li C, Che G Y, Xiao W L, et al. Study on the inhomogeneity of Al-Zn-Cu-Mg aluminum alloy plates with different thickness [J]. J. Mater. Sci., 2022, 57: 21460
[22] Zang C Y, Xiao W L, Fu Y, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging [J]. J. Alloys Compd., 2023, 952: 170023
[23] Liu C L, Wang X, Parson N C, et al. The effect of Mn on the high temperature flow stress of Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2021, A802: 140605
[24] Liu S H, Wang X D, Pan Q L, et al. Investigation of microstructure evolution and quench sensitivity of Al-Mg-Si-Mn-Cr alloy during isothermal treatment [J]. J. Alloys Compd., 2020, 826: 154144
[25] Christian J W. The Theory of Transformations in Metals and Alloys [M]. 3rd Ed., Oxford: Pergamon Press, 2002: 52
[26] She X W, Jiang X Q, Wang P Q, et al. Relationship between microstructure and mechanical properties of 5083 aluminum alloy thick plate [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1780
[27] Li J J, Ju J, Zhang Z, et al. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment [J]. Mater. Charact., 2021, 172: 110827
[1] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[2] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[3] 谢旭, 万一博, 钟明, 邹晓东, 王聪. CaF2-TiO2 焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控[J]. 金属学报, 2025, 61(7): 998-1010.
[4] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[5] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[6] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[7] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[8] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[9] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[10] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[11] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[12] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[13] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[14] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[15] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.