|
|
基于原位电阻法的7A65铝合金厚板双级时效工艺 |
肖文龙1,2,3( ), 臧晨阳2,3, 郭锦涛2,3, 冯佳文1, 马朝利1,2,3 |
1.天目山实验室 杭州 311115 2.北京航空航天大学 材料科学与工程学院 北京 100191 3.北京航空航天大学 云南创新研究院 昆明 650233 |
|
Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method |
XIAO Wenlong1,2,3( ), ZANG Chenyang2,3, GUO Jintao2,3, FENG Jiawen1, MA Chaoli1,2,3 |
1.Tianmushan Laboratory, Hangzhou 311115, China 2.School of Materials Science and Engineering, Beihang University, Beijing 100191, China 3.Yunnan Innovation Institute, Beihang University, Kunming 650233, China |
引用本文:
肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
Wenlong XIAO,
Chenyang ZANG,
Jintao GUO,
Jiawen FENG,
Chaoli MA.
Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. Acta Metall Sin, 2025, 61(8): 1153-1164.
[1] |
Li S S, Yue X, Li Q Y, et al. Development and applications of aluminum alloys for aerospace industry [J]. J. Mater. Res. Technol., 2023, 27: 944
|
[2] |
Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Mater. Sci. Eng., 2000, A280: 102
|
[3] |
Rometsch P A, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2003
|
[4] |
Zou Y, Wu X D, Tang S B, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios [J]. J. Mater. Sci. Technol., 2021, 85: 106
doi: 10.1016/j.jmst.2020.12.045
|
[5] |
Han B S, Wei L J, Xu Y J, et al. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment [J]. Acta. Metall. Sin., 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
|
[5] |
韩宝帅, 魏立军, 徐严谨 等. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响 [J]. 金属学报, 2020, 56: 1007
doi: 10.11900/0412.1961.2019.00402
|
[6] |
Mishra R S, Komarasamy M. Friction Stir Welding of High Strength 7XXX Aluminum Alloys [M]. Oxford: Butterworth-Heinemann, 2016: 5
|
[7] |
Zuo J R, Hou L G, Shi J T, et al. Enhanced plasticity and corrosion resistance of high strength Al-Zn-Mg-Cu alloy processed by an improved thermomechanical processing [J]. J. Alloys Compd., 2017, 716: 220
|
[8] |
Xiao Y P, Pan Q L, Li W B, et al. Influence of heat treatment on corrosion behaviour of Al-Zn-Mg-Cu-Zr-Sc alloy [J]. Mater. Corros., 2012, 63: 421
|
[9] |
Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050 [J]. Mater. Sci. Eng., 2008, A492: 1
|
[10] |
Tang J, Liu M C, Bo G W, et al. Unraveling precipitation evolution and strengthening function of the Al-Zn-Mg-Cu alloys with various Zn contents: Multiple experiments and integrated internal-state-variable modeling [J]. J. Mater. Sci. Technol., 2022, 116: 130
doi: 10.1016/j.jmst.2021.12.008
|
[11] |
Zhang Z, Deng Y L, Ye L Y, et al. Effect of multi-stage aging treatments on the precipitation and mechanical properties of Al-Zn-Mg alloys [J]. Mater. Sci. Eng., 2020, A785: 139394
|
[12] |
Li M H, Yang Y Q, Feng Z Q, et al. Precipitation sequence of η phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy during artificial aging [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2061
|
[13] |
Yang J L, Deng Y L, Qi X H, et al. Precipitation kinetics of second-phase particles in supersaturated solid solution of 7050 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2012, 43: 2528
|
[13] |
杨金龙, 邓运来, 祁小红 等. 过饱和7050铝合金固溶体中第二相粒子的析出动力学[J]. 中南大学学报(自然科学版), 2012, 43: 2528
|
[14] |
Wu S Z, Yi Y P, Huang S Q, et al. Research on quench sensitivity and microstructure analysis of 7050 aluminum alloy [J]. Acta Metall. Sin., 2016, 52: 1503
|
[14] |
吴书舟, 易幼平, 黄始全 等. 7050铝合金淬火敏感性研究和微观组织分析 [J]. 金属学报, 2016, 52: 1503
doi: 10.11900/0412.1961.2016.00050
|
[15] |
Liu J Z, Chen J H, Yang X B, et al. Revisiting the precipitation sequence in Al-Zn-Mg-based alloys by high-resolution transmission electron microscopy [J]. Scr. Mater., 2010, 63: 1061
|
[16] |
Jiang F L, Zurob H S, Purdy G R, et al. Characterizing precipitate evolution of an Al-Zn-Mg-Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring [J]. Mater. Charact., 2016, 117: 47
|
[17] |
Deschamps A, Brechet Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy—II. Modeling of precipitation kinetics and yield stress [J]. Acta Mater., 1998, 47: 293
|
[18] |
Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. J. Alloys Compd., 2019, 781: 945
|
[19] |
Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate [J]. Mater. Des., 2015, 85: 752
|
[20] |
Li C, Chen Z, Zhang X Q, et al. Hot deformation behavior of high Zn-containing 7A65 Al alloy [J]. Rare Met., 2023, 42: 302
|
[21] |
Li C, Che G Y, Xiao W L, et al. Study on the inhomogeneity of Al-Zn-Cu-Mg aluminum alloy plates with different thickness [J]. J. Mater. Sci., 2022, 57: 21460
|
[22] |
Zang C Y, Xiao W L, Fu Y, et al. Enhanced properties and homogeneity of Al-Zn-Mg-Cu alloy thick plate by non-isothermal aging [J]. J. Alloys Compd., 2023, 952: 170023
|
[23] |
Liu C L, Wang X, Parson N C, et al. The effect of Mn on the high temperature flow stress of Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2021, A802: 140605
|
[24] |
Liu S H, Wang X D, Pan Q L, et al. Investigation of microstructure evolution and quench sensitivity of Al-Mg-Si-Mn-Cr alloy during isothermal treatment [J]. J. Alloys Compd., 2020, 826: 154144
|
[25] |
Christian J W. The Theory of Transformations in Metals and Alloys [M]. 3rd Ed., Oxford: Pergamon Press, 2002: 52
|
[26] |
She X W, Jiang X Q, Wang P Q, et al. Relationship between microstructure and mechanical properties of 5083 aluminum alloy thick plate [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1780
|
[27] |
Li J J, Ju J, Zhang Z, et al. Precipitation behavior and mechanical properties of Al-Zn-Mg-Cu matrix nanocomposites: Effects of SiC nanoparticles addition and heat treatment [J]. Mater. Charact., 2021, 172: 110827
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|