Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00083
  本期目录 | 过刊浏览 |
基于晶体塑性的6XXX铝合金力学性能多尺度计算
郑潇禹,陈辛,何美玲,黄奇,李亚,孔毅,杜勇
中南大学 粉末冶金国家重点实验室  长沙 410083
Multi-Scale Simulation of 6XXX Aluminum Alloy Based on Crystal Plasticity
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

郑潇禹 陈辛 何美玲 黄奇 李亚 孔毅 杜勇. 基于晶体塑性的6XXX铝合金力学性能多尺度计算[J]. 金属学报, 10.11900/0412.1961.2024.00083.

全文: PDF(1103 KB)  
摘要: 6XXX系时效强化铝合金工程应用价值显著,但尚缺系统性的从微结构模拟到性能预测计算框架,本工作旨在构建完整的多尺度计算流程。根据晶体塑性理论对6XXX铝合金设计了一个基于物理机制从微结构演变到塑性大变形力学响应分析的全序列计算模型。以“结构-性能”关系为切入点,将晶粒尺寸与形貌、织构、析出相与固溶相信息、晶界无析出带特征等对力学性能起主要影响的因素考虑在内,通过几何建模、构建本构关系的方式建立模型对6XXX铝合金的力学行为进行描述。使用Kampmann-Wagner Numerical方法模拟析出相的尺寸分布与体积分数演变以及追踪固溶相含量;基于位错密度的材料强度学本构理论持续追踪屈服强度与加工硬化等特性随时效时间变化的规律;给出了晶界无析出区域的强度贡献计算方法与几何建模策略;基于晶体塑性有限元方法模拟了塑性变形行为并获得应力-应变曲线。本工作分析流程已拓展为了对各类铝合金材料研究具有普遍适用性的晶体性能计算工具包,并介绍了其特点与功能。
关键词 6XXX铝合金晶体塑性有限元塑性变形多尺度计算    
Abstract:6XXX age-strengthened aluminum alloys are extensively utilized across various fields, including construction, engineering machinery, and transportation, owing to their low density, good electrical conductivity and heat resistance, and excellent overall mechanical properties. Despite such widespread applications, there are no systematic computational frameworks for these alloys that are applicable across diverse processes, including microstructure simulations and performance predictions. Notably, to facilitate the material design and industrial production of 6XXX aged-strengthened aluminum alloys, the following steps are essential: analyzing the precipitation kinetics governing the mechanical properties of 6XXX aged-strengthened aluminum, developing precipitation kinetics models, establishing corresponding strengthening models correlating microstructural features with key mechanical performance metrics, and performing mechanical simulations under standard service conditions to obtain stress–strain response characteristics. Accordingly, this study introduces a full-sequence computational model for 6XXX age-strengthened alloys based on the crystal plasticity theory. The proposed model is applicable to the investigation of several characteristics, including microstructure evolution, mechanical responses, and plastic deformations. Employing “structure–property” relationships as the entry points, the mechanical behaviors of 6XXX age-strengthened aluminum alloys are described through geometrical modeling and intrinsic relationship derivations. During this process, major factors influencing mechanical properties, including grain size and morphology, fabrication structures, precipitation data and solid solution phases, and the characteristics of non-precipitation zones at the grain boundaries, are considered. The primary task involves computationally simulating the evolution of the size distribution and volume fraction of precipitated phases as well as variations in solid solution phase contents by sizing precipitated phases according to the grain size using the Kampmann–Wagner numerical method. According to the dislocation-density-based strengthening of materials, an age-strengthening model and a work-hardening model are established based on the interaction mechanism between precipitated phases and dislocations. The model tracks the evolution of yield strength and work-hardening properties with aging time. A method for computing the strength contribution from the precipitation-free zone at the grain boundary and a geometrical modeling strategy are proposed. The hardening model for 6XXX is selected based on the crystal-plasticity finite-element method, while uniaxial tensile plastic deformation is simulated to obtain stress–strain curves. The proposed multiscale analysis model of 6XXX age-strengthened aluminum alloys constructed based on the relationships among the alloy composition, aging process, microstructures, and mechanical properties of metallic materials provides a systematic framework for designing high-performance 6XXX age-strengthened alloys. It also highlights the key role played by computational mechanics in the development of new high-strength and high-toughness aluminum alloys, offering valuable insights. Furthermore, the analytical workflow of the study is extended to the crystal properties calculation package, which is universally applicable to studies on diverse age-strengthened materials, introducing its features and functions.
Key words6XXX aluminum alloy    crystal plastic finite element    plastic deformation    multiscale computation
收稿日期: 2024-03-18     
基金资助:国家自然科学基金项目;国家自然科学基金项目
[1] 刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
[2] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[4] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[7] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[8] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[9] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[10] 陈翔,陈伟,赵洋,禄盛,金晓清,彭向和. 考虑塑性变形和相变耦合效应的NiTiNb记忆合金管接头装配性能模拟[J]. 金属学报, 2020, 56(3): 361-373.
[11] 王磊, 安金岚, 刘杨, 宋秀. 多场耦合作用下GH4169合金变形行为与强韧化机制[J]. 金属学报, 2019, 55(9): 1185-1194.
[12] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[13] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[14] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[15] 涂爱东, 滕春禹, 王皞, 徐东生, 傅耘, 任占勇, 杨锐. Ti-Al合金γ/α2界面结构及拉伸变形行为的分子动力学模拟[J]. 金属学报, 2019, 55(2): 291-298.