Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1165-1173    DOI: 10.11900/0412.1961.2023.00429
  研究论文 本期目录 | 过刊浏览 |
双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理
吴泽威1, 颜俊雄1, 胡励1(), 韩修柱2()
1.重庆理工大学 材料科学与工程学院 重庆 400054
2.北京空间飞行器总体设计部 北京 100094
Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature
WU Zewei1, YAN Junxiong1, HU Li1(), HAN Xiuzhu2()
1.College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2.Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
引用本文:

吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
Zewei WU, Junxiong YAN, Li HU, Xiuzhu HAN. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. Acta Metall Sin, 2025, 61(8): 1165-1173.

全文: PDF(4277 KB)   HTML
摘要: 

双峰分离非基面织构AZ31镁合金板材的室温轧制性能较传统基面织构AZ31镁合金板材提升显著,但其中温轧制性能尚不明晰。为揭示双峰分离非基面织构AZ31镁合金板材的中温(200 ℃)轧制变形行为及机理,利用EBSD技术,系统研究了基面织构和双峰分离非基面织构AZ31镁合金板材在200 ℃多道次轧制变形过程中的微观组织特征。结果表明,双峰分离非基面织构AZ31镁合金板材在中温条件下的轧制性能相较于基面织构板材仅有微小提升,双峰分离非基面织构板材经过五道次轧制后出现边裂现象,其累积压下量为48.0%;基面织构板材经过四道次轧制后出现边裂现象,其累积压下量为43.6%。基面织构板材在轧制变形过程中会激发大量的基面<a>位错和非基面位错(包括柱面<a>位错和锥面<c + a>位错),以及少量的{101¯1}-{101¯2}二次孪生,进而在晶界和孪晶界位置发生明显的动态再结晶,相应的再结晶体积分数高达47.9%。双峰分离非基面织构板材在轧制变形初期除了激活高密度的位错,亦会激发大量的{101¯2}拉伸孪晶来承载塑性应变。随着轧制道次增加,{101¯2}拉伸孪晶界向晶粒基体区域迁移的同时吸收大量位错,这会降低变形晶粒内的位错密度,进而延缓动态再结晶的发生,导致双峰分离非基面织构板材温轧后的再结晶体积分数仅为11.4%。双峰分离非基面织构板材和基面织构板材在中温条件下区别显著的动态再结晶行为,是导致2者轧制性能接近(累积压下量差异仅为4.4%)的主要原因。

关键词 AZ31镁合金板材双峰分离非基面织构中温轧制变形行为微观组织演化    
Abstract

An AZ31 magnesium alloy sheet with bimodal non-basal texture exhibits better rolling performance at room temperature compared with that with a typical basal texture. However, the rolling performance of bimodal non-basal texture sheets under medium temperature conditions remains unexplored. Therefore, this study aims to elucidate the rolling behavior and deformation mechanism of bimodal non-basal texture sheets at 200 oC. Employing EBSD characterizations, the microstructural characteristics of rolled sheets with initial basal and bimodal non-basal textures throughout a multipass rolling process were systematically investigated. Results showed that at medium temperature, the rolling performance of sheets with bimodal non-basal texture improved only slightly compared with those with basal texture. Especially, edge cracks were observed in deformed bimodal non-basal texture sheets after the fifth rolling pass, with a corresponding accumulative thickness reduction of approximately 48.0%. In contrast, sheets with basal texture exhibited edge cracks after the fourth rolling pass, with a corresponding accumulative thickness reduction of approximately 43.6%. A large number of basal <a> and non-basal dislocations (including prismatic <a> and pyramidal <c + a> dislocations) as well as a small number of {1011}-{1012} secondary twins were activated during the rolling deformation of basal texture sheets. These dislocations cause extensive dynamic recrystallization (DRX) near grain boundaries and twin interfaces, with the corresponding DRX volume fraction reaching as high as 47.9%. For bimodal non-basal textured sheets, in addition to the activation of high-density dislocations at the beginning of rolling deformation, an extensive {101¯2} extension twins (ETs) were activated to carry plastic strain. With increasing rolling passes, {101¯2} ET boundaries migrated toward the matrix region and absorbed a large number of dislocations, thereby reducing the dislocation density within deformed grains. This phenomenon would delay the DRX onset, resulting in a small DRX volume fraction of approximately 11.4%. The pronounced difference in the DRX behavior between bimodal non-basal texture sheets and basal texture sheets at medium temperature primarily accounts for their similar rolling performance, with mere 4.4% difference in accumulative thickness reduction.

Key wordsAZ31 magnesium alloy sheet    bimodal non-basal texture    warm rolling    deformation behavior    microstructure evolution
收稿日期: 2023-10-26     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金项目(52275308);重庆市博士后研究项目(2021XM1022);重庆理工大学科研创新团队培育计划项目(2023TDZ010);重庆理工大学校级研究生创新项目(gzlcx20232001)
通讯作者: 胡 励,huli@cqut.edu.cn,主要从事镁合金板材特种塑性加工及变形行为研究;
韩修柱,xiuzhuhan@163.com,主要从事镁合金复合板材的特种轧制工艺及变形行为研究
Corresponding author: HU Li, associate professor, Tel: 17358428920, E-mail: huli@cqut.edu.cn;
HAN Xiuzhu, professor, Tel: 13391570360, E-mail: xiuzhuhan@163.com
作者简介: 吴泽威,男,1999年生,硕士生
Sheet typeAs-receivedFirst passSecond passThird passFourth passFifth pass
Basal texture sheet1.101.060.920.780.62-
Bimodal non-basal texture sheet1.101.060.890.820.720.57
表1  不同织构AZ31镁合金板材中温轧制的厚度变化 (mm)
图1  双峰分离非基面织构AZ31镁合金板材的初始微观组织和织构
图2  不同织构AZ31镁合金板材在中温制变形过程中出现边裂的宏观照片
图3  基面织构AZ31镁合金板材中温轧制样品微观结构特征的EBSD分析
图4  双峰分离非基面织构AZ31镁合金板材中温轧制样品微观结构特征的EBSD分析
图5  不同织构AZ31镁合金板材中温轧制变形过程中的再结晶晶粒演化
图6  不同织构AZ31镁合金板材中温轧制过程中的变形机制示意图
[1] You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magnes. Alloy., 2017, 5: 239
[2] Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
[3] Hirsch J, Al-Samman T. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications [J]. Acta Mater., 2013, 61: 818
[4] Ding W J, Wu Y J, Peng L M, et al. Research and application development of advanced magnesium alloys [J]. Mater. China, 2010, 29(8): 37
[4] 丁文江, 吴玉娟, 彭立明 等. 高性能镁合金研究及应用的新进展 [J]. 中国材料进展, 2010, 29(8): 37
[5] Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
[6] Shen Z, Wang Z P, Hu B, et al. Research progress on the mechanisms controlling high-temperature oxidation resistance of Mg alloys [J]. Acta Metall. Sin., 2023, 59: 371
doi: 10.11900/0412.1961.2022.00495
[6] 沈 朝, 王志鹏, 胡 波 等. 镁合金抗高温氧化机理研究进展 [J]. 金属学报, 2023, 59: 371
[7] Luo J R, Liu Q, Liu W, et al. Influence of rolling temperature on the {1011}-{1012} twinning in rolled AZ31 magnesium alloy sheets [J]. Acta Metall. Sin., 2012, 48: 717
[7] 罗晋如, 刘 庆, 刘 伟 等. 轧制温度对AZ31镁合金轧制板材中的{1011}-{1012}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717
doi: 10.3724/SP.J.1037.2012.00019
[8] Luo J R, Godfrey A, Liu W, et al. Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling [J]. Acta Mater., 2012, 60: 1986
[9] Liu Z J, Zhao H Y, Hu X D, et al. Effects of rolling temperature on edge crack and microstructure of AZ31B magnesium alloy thin strip [J]. Hot Work. Technol., 2016, 45(21): 34
[9] 刘子健, 赵红阳, 胡小东 等. 轧制温度对AZ31B镁合金薄带轧制的边裂及显微组织的影响 [J]. 热加工工艺, 2016, 45(21): 34
[10] Li Y S, Qu C, Wang J H, et al. Effect of multi-pass warm rolling process on microstructure and properties of AZ31 magnesium alloy [J]. Chin. J. Nonferrous Met., 2020, 30: 60
[10] 李彦生, 渠 成, 王金辉, 等. 多道次温轧对AZ31镁合金组织和性能的影响 [J]. 中国有色金属学报, 2020, 30: 60
[11] Jia W P, Hu X D, Zhao H Y, et al. Texture evolution of AZ31 magnesium alloy sheets during warm rolling [J]. J. Alloys Compd., 2015, 645: 70
[12] Tu J, Zhou T, Liu L, et al. Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature [J]. J. Alloys Compd., 2018, 768: 598
[13] Zhang S Z, Hu L, Ruan Y T, et al. Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature [J]. J. Magnes. Alloy., 2023, 11: 2600
[14] Kamaya M, Maekawa N. A procedure to obtain correlation curve between local misorientation and plastic strain [J]. Mater. Charact., 2023, 198: 112725
[15] Kamaya M, Sakakibara Y, Yoda R, et al. A round robin EBSD measurement for quantitative assessment of small plastic strain [J]. Mater. Charact., 2020, 170: 110662
[16] Han X Z, Hu L, Jia D Y, et al. Role of unusual double-peak texture in significantly enhancing cold rolling formability of AZ31 magnesium alloy sheet [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 2351
[17] Chen J M. Study on cold rolling formability and associated microstructure evolution of AZ31 magnesium alloy sheet with bimodal non-basal texture [D]. Chongqing: Chongqing University of Technology, 2021
[17] 陈家明. 双峰分离非基面织构AZ31镁合金板材冷轧性能及组织演化研究 [D]. 重庆: 重庆理工大学, 2021
[18] Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties [J]. Mater. Des., 2017, 121: 202
[19] Wei S B, Cai Q W, Tang D, et al. Microstructure evolution in warm rolling of extrude AZ31B magnesium alloy plates [J]. J. Plast. Eng., 2008, 15(6): 91
[19] 魏松波, 蔡庆伍, 唐 荻 等. 挤压AZ31B镁合金板材中温轧制变形中的组织变化 [J]. 塑性工程学报, 2008, 15(6): 91
[20] Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metall. Sin., 2010, 46: 1458
doi: 10.3724/SP.J.1037.2010.00446
[20] 刘 庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
[21] Chapuis A, Driver J H. Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals [J]. Acta Mater., 2011, 59(5):198
[22] Bajargan G, Singh G, Sivakumar D, et al. Effect of temperature and strain rate on the deformation behavior and microstructure of a homogenized AZ31 magnesium alloy [J]. Mater. Sci. Eng., 2013, A579: 26
[23] Ebeling T, Hartig C, Laser T, et al. Deformation mechanisms of AZ31 magnesium alloy [A]. Essential Readings in Magnesium Technology [M]. Cham: Springer, 2016: 333
[24] Shi J J, Ye P, Cui K X, et al. Static recrystallization induced by twinning in AZ31 magnesium alloy [J]. J. Mater. Eng., 2018, 46(11): 134
[24] 石晶晶, 叶 朋, 崔凯旋 等. 孪晶诱发的AZ31镁合金静态再结晶行为 [J]. 材料工程, 2018, 46(11): 134
doi: 10.11868/j.issn.1001-4381.2017.000127
[25] Pandey A, Kabirian F, Hwang J H, et al. Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations [J]. Int. J. Plast., 2015, 68: 111
[26] Zhang Z, Peng J H, Huang J A, et al. { 10 1 ¯ 2 } twinning nucleation in magnesium assisted by alternative sweeping of partial dislocations via an intermediate precursor [J]. J. Magnes. Alloy., 2020, 8: 1102
doi: 10.1016/j.jma.2020.06.012
[27] Huang Y J, Zeng G, Huang L X, et al. Influence of strain rate on dynamic recrystallization behavior and hot formability of basal-textured AZ80 magnesium alloy [J]. Mater. Charact., 2022, 187: 111880
[1] 姜沐池, 宫继双, 杨兴远, 任德春, 蔡雨升, 李秉洋, 吉海宾, 雷家峰. Ti30Ni50Hf20 高温形状记忆合金的热变形行为[J]. 金属学报, 2025, 61(6): 857-865.
[2] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[3] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[4] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[5] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[9] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] 吕昭平, 雷智锋, 黄海龙, 刘少飞, 张凡, 段大波, 曹培培, 吴渊, 刘雄军, 王辉. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
[11] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[12] 刘永康, 黄海友, 谢建新. 连续柱状晶组织CuNi10Fe1Mn合金变形行为的各向异性[J]. 金属学报, 2015, 51(1): 40-48.
[13] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
[14] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[15] 韩国民 韩志强 霍亮 段军鹏 朱训明 柳百成. 考虑固溶及时效处理的镁合金铸件微观组织模拟及力学性能预测[J]. 金属学报, 2012, 48(3): 363-370.