|
|
不锈钢复合钢筋近界面微观组织演变及元素扩散动力学 |
郭星星1, 帅美荣1( ), 楚志兵1, 李玉贵2, 谢广明3 |
1 太原科技大学 重型机械教育部工程研究中心 太原 030024 2 太原科技大学 机械工程学院 太原 030024 3 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819 |
|
Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar |
GUO Xingxing1, SHUAI Meirong1( ), CHU Zhibing1, LI Yugui2, XIE Guangming3 |
1 Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
引用本文:
郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
Xingxing GUO,
Meirong SHUAI,
Zhibing CHU,
Yugui LI,
Guangming XIE.
Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. Acta Metall Sin, 2025, 61(2): 336-348.
1 |
Ban H Y, Mei Y X, Shi Y J. Research advances of stainless-clad bimetallic steel structures [J]. Eng. Mech., 2021, 38(6): 1
|
1 |
班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展 [J]. 工程力学, 2021, 38(6): 1
|
2 |
Xiang Y, Huang L, Zeng L F, et al. Development and application prospect of hot rolled stainless steel-carbon steel composite rebar [J]. Met. Mater. Metall. Eng., 2017, 45(suppl.1) : 84
|
2 |
向 勇, 黄 玲, 曾麟芳 等. 热轧不锈钢-碳钢复合钢筋的开发和应用前景 [J]. 金属材料与冶金工程, 2017, 45(): 84
|
3 |
Liu X, Shuai M R, Li H B, et al. Effect of micro-tension on interfacial composite quality and atomic diffusion of stainless/carbon steel [J]. Mater. Rev., 2022, 36(23): 127
|
3 |
刘 鑫, 帅美荣, 李海斌 等. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响 [J]. 材料导报, 2022, 36(23): 127
|
4 |
Song H, Shin H, Shin Y. Heat-treatment of clad steel plate for application of hull structure [J]. Ocean Eng., 2016, 122: 278
|
5 |
Mudhaffar M A, Saleh N A, Aassy A. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars [J]. Procedia Manuf., 2017, 8: 353
|
6 |
Wang S, Zhao G H, Li Y G, et al. Composite plate rolling technology of 304/Q345R based on a corrugated interface [J]. Materials, 2019, 12: 3866
|
7 |
Jiang L Y, Zhao C J, Yuan G, et al. Thicker steel plate shape-changing law and control method during the snake rolling process [J]. Metall. Res. Technol., 2016, 113: 309
|
8 |
Wu B N, Guo K, Yang X Y, et al. Effect of carbon content of substrate on the microstructure changes and tensile behavior of clad layer of stainless steel composites [J]. Mater. Sci. Eng., 2022, A831: 142201
|
9 |
Yang Y H, Jiang Z Z, Li S X, et al. Hot deformation behavior and microstructure evolution of stainless steel/carbon steel laminated composites [J]. Mater. Sci. Eng., 2022, A842: 142994
|
10 |
Noh S, Kimura A, Kim T K. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation [J]. Fusion Eng. Des., 2014, 89: 1746
|
11 |
He P, Yue X, Zhang J H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer [J]. Mater. Sci. Eng., 2008, A486: 171
|
12 |
Lin Z M, Wang S, He J, et al. The effect of Ni interlayer on the hot-rolled and quenched stainless steel clad plate [J]. Materials, 2020, 13: 5455
|
13 |
Liu B X, Wang S, Fang W, et al. Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment [J]. Mater. Chem. Phys., 2018, 216: 460
|
14 |
Jin H R, Zhang L, Dai C, et al. Numerical simulation and experimental study on the interface bonding of stainless steel clad plate [J]. Strength Mater., 2018, 50: 29
|
15 |
Cho S H, Yoo Y C. Static recrystallization kinetics of 304 stainless steels [J]. J. Mater. Sci., 2001, 36: 4273
|
16 |
He W W, Li F, Zhang H Y, et al. The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18N austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A764: 138245
|
17 |
Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
|
18 |
Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, A485: 664
|
19 |
Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 3876
|
20 |
Liu Y H, Yao Z K, Ning Y Q, et al. Effect of deformation temperature and strain rate on dynamic recrystallized grain size of a powder metallurgical nickel-based superalloy [J]. J. Alloys Compd., 2017, 691: 554
|
21 |
Yang Y H, Jiang Z Z, Chen Y T, et al. Interfacial microstructure and strengthening mechanism of stainless steel/carbon steel laminated composite fabricated by liquid-solid bonding and hot rolling [J]. Mater. Charact., 2022, 191: 112122
|
22 |
Giordani E J, Jorge Jr A M, Balancin O. Proportion of recovery and recrystallization during interpass times at high temperatures on a Nb-and N-bearing austenitic stainless steel biomaterial [J]. J. Alloys Compd., 2006, 55: 743
|
23 |
Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni [J]. Mater. Sci. Eng., 2011, A528: 7488
|
24 |
El Wahabi M, Gavard L, Montheillet F, et al. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels [J]. Acta Mater., 2005, 53: 4605
|
25 |
Lin Y C, Wu X Y, Chen X M, et al. EBSD study of a hot deformed nickel-based superalloy [J]. J. Alloys Compd., 2015, 640: 101
|
26 |
Qin F M, Li Y J, He W W, et al. Effects of deformation microbands and twins on microstructure evolution of as-cast Mn18Cr18N austenitic stainless steel [J]. J. Mater. Res., 2017, 32: 3864
|
27 |
Zhong X T, Huang L K, Liu F. Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of Incoloy 825 [J]. J. Mater. Eng. Perform., 2020, 29: 6155
|
28 |
Liu B X, Wang S, Fang W, et al. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate [J]. Mater. Charact., 2019, 148: 17
doi: 10.1016/j.matchar.2018.12.008
|
29 |
Yang X T, Fu X Y, Feng L, et al. NiCoCrAlY coating of in-situ synthesis by vacuum diffusion and its oxidation resistance [J]. Rare Met. Mater. Eng., 2020, 49: 1750
|
29 |
杨效田, 付小月, 冯 力 等. 真空扩散原位合成NiCoCrAlY涂层及其抗氧化性能 [J]. 稀有金属材料与工程, 2020, 49: 1750
|
30 |
Lin Z M, Liu B X, Yu W X, et al. The evolution behavior and constitution characteristics of interfacial oxides in the hot-rolled stainless steel clad plate [J]. Corros. Sci., 2023, 211: 110866
|
31 |
Li L, Zhang X J, Liu H Y, et al. Formation mechanism of oxide inclusion on the interface of hot-rolled stainless steel clad plates [J]. J. Iron Steel Res., 2013, 25: 43
|
31 |
李 龙, 张心金, 刘会云 等. 热轧不锈钢复合板界面氧化物夹杂的形成机制 [J]. 钢铁研究学报, 2013, 25: 43
|
32 |
Liu B X, Yin F X, Dai X L, et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status [J]. Mater. Sci. Eng., 2017, A679: 172
|
33 |
Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding [J]. J Mater. Process. Technol., 2020, 283: 116733.
|
34 |
Wang S, Liu B X, Chen C X, et al. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios [J]. J. Alloys Compd., 2018, 766: 517
|
35 |
Wang H T, Han E H. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water [J]. Comput. Mater. Sci., 2018, 149: 143
|
36 |
Ma X Y, Zhang Q, Chen X, et al. Inter-diffusion behavior of Ni/Fe/Ni laminated composite for magnetic and electromagnetic interference shielding [J]. Vacuum, 2015, 119: 196
|
37 |
Tian N N, Guan J T, Zhang C L, et al. Influence of high-current pulsed electron beam irradiation on element diffusion behavior and mechanical properties of TC4/304 stainless steel diffusion bonded joints [J]. Mater. Charact., 2023, 198: 112713
|
38 |
Chen C X, Liu M Y, Liu B X, et al. Tensile shear sample design and interfacial shear strength of stainless steel clad plate [J]. Fusion Eng. Des., 2017, 125: 431
|
39 |
Zhong Z H, Hinoki T, Jung H C, et al. Microstructure and mechanical properties of diffusion bonded SiC/steel joint using W/Ni interlayer [J]. Mater. Des., 2010, 31: 1070
|
40 |
Luo S G. Effect of grain size on grain boundary diffusion process and properties of sintered NdFeB [D]. Ganzhou: JiangXi University of Science and Technology, 2022
|
40 |
罗三根. 晶粒尺寸对烧结钕铁硼晶界扩散行为及性能的影响 [D]. 赣州: 江西理工大学, 2022
|
41 |
Wu H. Microstructure evolution and element migration (diffusion) behavior of a Ni-based alloy processed by surface mechanical rolling treatment [D]. Nanjing: Nanjing University of Science and Technology, 2020
|
41 |
吴 豪. 表面机械滚压处理镍基合金结构演化和元素迁移与扩散行为的研究 [D]. 南京: 南京理工大学, 2020
|
42 |
Liu B X, Wang S, Chen C X, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Appl. Surf. Sci., 2019, 463: 121
doi: 10.1016/j.apsusc.2018.08.221
|
43 |
Eich S M, Kasprzak M, Gusak A, et al. On the mechanism of diffusion-induced recrystallization: Comparison between experiment and molecular dynamics simulations [J]. Acta Mater., 2012, 60: 3469
|
44 |
Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel [J]. J. Mater. Process. Technol., 2016, 234: 272
|
45 |
Li Z, Zhao J W, Jia F H, et al. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment [J]. Mater. Sci. Eng., 2020, A787: 139513
|
46 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
47 |
Zhang Q F, Zhao J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method [J]. Intermetallics, 2013, 34: 132 ***********************************************************************************************************
|
47 |
作 者 勘 误
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|