Please wait a minute...
金属学报  2025, Vol. 61 Issue (2): 336-348    DOI: 10.11900/0412.1961.2023.00032
  研究论文 本期目录 | 过刊浏览 |
不锈钢复合钢筋近界面微观组织演变及元素扩散动力学
郭星星1, 帅美荣1(), 楚志兵1, 李玉贵2, 谢广明3
1 太原科技大学 重型机械教育部工程研究中心 太原 030024
2 太原科技大学 机械工程学院 太原 030024
3 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar
GUO Xingxing1, SHUAI Meirong1(), CHU Zhibing1, LI Yugui2, XIE Guangming3
1 Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
Xingxing GUO, Meirong SHUAI, Zhibing CHU, Yugui LI, Guangming XIE. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. Acta Metall Sin, 2025, 61(2): 336-348.

全文: PDF(4098 KB)   HTML
摘要: 

不锈钢复合钢筋是一种新型复合结构材料,能够满足海洋服役的苛刻性能需求,从而有效解决基础材料产能过剩问题。产品复合界面质量往往取决于界面微观组织和界面化合物分布等,变形参数则是界面质量控制的基础,通过控制压下率可以获得复合界面均匀且性能优异的产品。本工作针对不锈钢复合钢筋304/Q235开展高温热压缩实验,研究应变速率1 s-1,压下率20%、40%和60%条件下近界面微观组织演变特征,阐明近界面不锈钢侧微观组织动态形核机制以及晶界迁移过程;基于非稳态条件下单向流动的Fick第二定律,建立复合界面过渡区域元素扩散模型,进一步研究界面微观组织演变和元素扩散行为的相关性。结果表明,变形温度为1000 ℃时,界面两侧晶粒动态再结晶比例不协调,碳钢侧晶粒发生完全动态再结晶,而不锈钢侧晶粒仅在高压下率工况下受位错机制主导发生较为显著的动态再结晶。变形温度为1100 ℃时,不锈钢侧的动态再结晶由孪生机制主导控制,Σ3孪晶对再结晶过程起加速作用,界面两侧变形协调性显著提高。进一步研究表明,晶粒细化和位错、孪晶等缺陷的移动对元素扩散行为具有促进作用,界面化合物演变和空洞闭合对界面元素扩散行为也具有明显提升效果。此外,采用Boltzmann-Matano法确定Matano面位置,引入Levenber-Marquardt多元非线性参数拟合方法,构建的元素扩散模型能够精确反映复合界面过渡区域的元素浓度,为复合材料金属间冶金结合质量提升、界面性能调控提供理论支撑。

关键词 复合压缩微观组织演变孪晶机制元素扩散动力学    
Abstract

The composite rebar of stainless steel is used as a new type of structural material and can meet the strict performance requirements of marine service, effectively solving the overcapacity problem of basic materials. The quality of the composite interface generally depends on the interface microstructure and the distribution of interface compounds. However, the deformation parameters also indicate the interface quality, and a composite product with a uniform interface and excellent performance could be obtained by controlling the reduction rate. Herein, high-temperature compression experiments were conducted on the composite materials of 304/Q235. The near-interface characteristics of the microstructure evolution were studied under a strain rate of 1 s-1 and reduction rates of 20%, 40%, and 60% to elucidate the dynamic nucleation mechanism and grain boundary migration of the stainless steel side of the interface. Based on Fick's second law of one-way flow under unsteady conditions, an element diffusion model of the composite interface transition region was established to explore the correlation between the interface microstructure evolution and element diffusion behavior. The results show that there is an uncoordinated dynamic recrystallization occured on both sides of the interface at the temperature of 1000 oC. The grains completely change during dynamic recrystallization at the carbon steel side of the interface, while the recrystallization dominated by the dislocation mechanism significantly occurs under the working condition with a high pressure rate (60%) at the stainless steel side. At a deformation temperature of 1100 oC, dynamic recrystallization is controlled by the dominant twinning mechanism at the stainless steel side, where Σ3 twinning accelerates the recrystallization process. At this time, the coordination of deformation is significantly improved on both sides of the interface. Further studies show that grain refinement and the movement of dislocation and twin defects have a positive effect on the element diffusion behavior. In addition, interfacial intermetallic compound evolution and cavity closure have a significant enhancement effect on interfacial elemental diffusion behavior. The Boltzmann-Matano method is employed to determine the position of the Matano surface, and the Levenberg-Marquardt method is employed to fit the multivariate nonlinear parameters. The established element diffusion model can accurately reflect the elemental concentration in the composite interface transition region, which provides theoretical support for the improvement of metallurgical bonding quality and interface performance control of composite materials.

Key wordscomposite compression    microstructure evolution    twin mechanism    element diffusion dynamics
收稿日期: 2023-01-20     
ZTFLH:  TB331  
基金资助:国家自然科学基金项目(52075357);山西省重点研发计划项目(201903D121043);山西省研究生教育创新项目(20-21Y709; 2022Y709);轧制技术及连轧自动化国家重点实验室(东北大学)开放课题项目(2020RALKFKT013)
通讯作者: 帅美荣,2001041@tyust.edu.cn,主要从事高性能金属塑性变形机理与复合材料界面组织演化等研究
Corresponding author: SHUAI Meirong, professor, Tel: 13935124835, E-mail: 2001041@tyust.edu.cn
作者简介: 郭星星,男,1997年生,硕士
SteelCSiMnPSCrNiFe
3040.051.002.000.0220.00819.18.5Bal.
Q2350.170.801.000.0450.040--Bal.
表1  不锈钢和碳钢的化学成分 (mass fraction / %)
图1  热压缩实验流程图和压缩试样选取示意图
图2  不锈钢复合钢筋在1000 ℃时测量区域示意图(40%压下率)和不同压下率时复合界面显微组织的SEM像
图3  不锈钢复合钢筋在1100 ℃不同压下率时复合界面的反极图和晶界图
图4  不锈钢复合钢筋在1100 ℃不同压下率时复合界面再结晶晶粒分布图和不锈钢侧晶界取向差分布直方图
图5  1100 ℃下不锈钢复合钢筋中不同角度晶界和动态再结晶晶粒体积分数随压下率的变化
图6  不锈钢复合钢筋在1100 ℃不同压下率时复合界面的XRD谱
图7  不锈钢复合钢筋在1100 ℃不同压下率时复合界面微观形貌的EPMA像
Reduction ratePointMass fraction of element / %Ratio
SiMnOFeCrCMn∶Si∶OM∶C
20%120.220.859.9---1∶1.03∶2.97-
2---33.645.321.1-22.4∶6
40%320.019.560.5---1∶0.98∶3.03-
4---26.852.520.7-22.9∶6
60%520.620.959.5---1∶1.01∶2.89-
6---29.150.720.2-23.7∶6
表2  图7中点1~6的EDS分析结果
图8  不锈钢复合钢筋在1100 ℃不同压下率时复合界面的EPMA线扫谱
图9  1100 ℃下压下率对元素扩散距离的影响
Reduction rateElementAB1B2αβD1D2
20%Fe0.8080.1610.1450.3281.9212.1712.000
Cr0.094-0.102-0.0860.5911.0503.1502.452
Ni0.041-0.043-0.039-2.3042.4441.3530.905
40%Fe0.8010.1530.1541.0141.3861.5091.204
Cr0.087-0.109-0.0771.1851.5544.0851.679
Ni0.043-0.042-0.042-0.252-1.4452.8276.530
60%Fe0.8010.1560.1531.3080.8622.0053.193
Cr0.096-0.099-0.0852.9521.4430.8593.311
Ni0.042-0.045-0.0420.790-0.3211.2683.816
表3  1100 ℃元素扩散模型拟合参数
图10  不锈钢复合钢筋在1100 ℃不同压下率时界面过渡区域元素浓度分布曲线
1 Ban H Y, Mei Y X, Shi Y J. Research advances of stainless-clad bimetallic steel structures [J]. Eng. Mech., 2021, 38(6): 1
1 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展 [J]. 工程力学, 2021, 38(6): 1
2 Xiang Y, Huang L, Zeng L F, et al. Development and application prospect of hot rolled stainless steel-carbon steel composite rebar [J]. Met. Mater. Metall. Eng., 2017, 45(suppl.1) : 84
2 向 勇, 黄 玲, 曾麟芳 等. 热轧不锈钢-碳钢复合钢筋的开发和应用前景 [J]. 金属材料与冶金工程, 2017, 45(): 84
3 Liu X, Shuai M R, Li H B, et al. Effect of micro-tension on interfacial composite quality and atomic diffusion of stainless/carbon steel [J]. Mater. Rev., 2022, 36(23): 127
3 刘 鑫, 帅美荣, 李海斌 等. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响 [J]. 材料导报, 2022, 36(23): 127
4 Song H, Shin H, Shin Y. Heat-treatment of clad steel plate for application of hull structure [J]. Ocean Eng., 2016, 122: 278
5 Mudhaffar M A, Saleh N A, Aassy A. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars [J]. Procedia Manuf., 2017, 8: 353
6 Wang S, Zhao G H, Li Y G, et al. Composite plate rolling technology of 304/Q345R based on a corrugated interface [J]. Materials, 2019, 12: 3866
7 Jiang L Y, Zhao C J, Yuan G, et al. Thicker steel plate shape-changing law and control method during the snake rolling process [J]. Metall. Res. Technol., 2016, 113: 309
8 Wu B N, Guo K, Yang X Y, et al. Effect of carbon content of substrate on the microstructure changes and tensile behavior of clad layer of stainless steel composites [J]. Mater. Sci. Eng., 2022, A831: 142201
9 Yang Y H, Jiang Z Z, Li S X, et al. Hot deformation behavior and microstructure evolution of stainless steel/carbon steel laminated composites [J]. Mater. Sci. Eng., 2022, A842: 142994
10 Noh S, Kimura A, Kim T K. Diffusion bonding of 9Cr ODS ferritic/martensitic steel with a phase transformation [J]. Fusion Eng. Des., 2014, 89: 1746
11 He P, Yue X, Zhang J H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer [J]. Mater. Sci. Eng., 2008, A486: 171
12 Lin Z M, Wang S, He J, et al. The effect of Ni interlayer on the hot-rolled and quenched stainless steel clad plate [J]. Materials, 2020, 13: 5455
13 Liu B X, Wang S, Fang W, et al. Microstructure and mechanical properties of hot rolled stainless steel clad plate by heat treatment [J]. Mater. Chem. Phys., 2018, 216: 460
14 Jin H R, Zhang L, Dai C, et al. Numerical simulation and experimental study on the interface bonding of stainless steel clad plate [J]. Strength Mater., 2018, 50: 29
15 Cho S H, Yoo Y C. Static recrystallization kinetics of 304 stainless steels [J]. J. Mater. Sci., 2001, 36: 4273
16 He W W, Li F, Zhang H Y, et al. The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18N austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A764: 138245
17 Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
18 Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation [J]. Mater. Sci. Eng., 2008, A485: 664
19 Mirzadeh H, Cabrera J M, Prado J M, et al. Hot deformation behavior of a medium carbon microalloyed steel [J]. Mater. Sci. Eng., 2011, A528: 3876
20 Liu Y H, Yao Z K, Ning Y Q, et al. Effect of deformation temperature and strain rate on dynamic recrystallized grain size of a powder metallurgical nickel-based superalloy [J]. J. Alloys Compd., 2017, 691: 554
21 Yang Y H, Jiang Z Z, Chen Y T, et al. Interfacial microstructure and strengthening mechanism of stainless steel/carbon steel laminated composite fabricated by liquid-solid bonding and hot rolling [J]. Mater. Charact., 2022, 191: 112122
22 Giordani E J, Jorge Jr A M, Balancin O. Proportion of recovery and recrystallization during interpass times at high temperatures on a Nb-and N-bearing austenitic stainless steel biomaterial [J]. J. Alloys Compd., 2006, 55: 743
23 Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni [J]. Mater. Sci. Eng., 2011, A528: 7488
24 El Wahabi M, Gavard L, Montheillet F, et al. Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels [J]. Acta Mater., 2005, 53: 4605
25 Lin Y C, Wu X Y, Chen X M, et al. EBSD study of a hot deformed nickel-based superalloy [J]. J. Alloys Compd., 2015, 640: 101
26 Qin F M, Li Y J, He W W, et al. Effects of deformation microbands and twins on microstructure evolution of as-cast Mn18Cr18N austenitic stainless steel [J]. J. Mater. Res., 2017, 32: 3864
27 Zhong X T, Huang L K, Liu F. Discontinuous dynamic recrystallization mechanism and twinning evolution during hot deformation of Incoloy 825 [J]. J. Mater. Eng. Perform., 2020, 29: 6155
28 Liu B X, Wang S, Fang W, et al. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate [J]. Mater. Charact., 2019, 148: 17
doi: 10.1016/j.matchar.2018.12.008
29 Yang X T, Fu X Y, Feng L, et al. NiCoCrAlY coating of in-situ synthesis by vacuum diffusion and its oxidation resistance [J]. Rare Met. Mater. Eng., 2020, 49: 1750
29 杨效田, 付小月, 冯 力 等. 真空扩散原位合成NiCoCrAlY涂层及其抗氧化性能 [J]. 稀有金属材料与工程, 2020, 49: 1750
30 Lin Z M, Liu B X, Yu W X, et al. The evolution behavior and constitution characteristics of interfacial oxides in the hot-rolled stainless steel clad plate [J]. Corros. Sci., 2023, 211: 110866
31 Li L, Zhang X J, Liu H Y, et al. Formation mechanism of oxide inclusion on the interface of hot-rolled stainless steel clad plates [J]. J. Iron Steel Res., 2013, 25: 43
31 李 龙, 张心金, 刘会云 等. 热轧不锈钢复合板界面氧化物夹杂的形成机制 [J]. 钢铁研究学报, 2013, 25: 43
32 Liu B X, Yin F X, Dai X L, et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status [J]. Mater. Sci. Eng., 2017, A679: 172
33 Xie B J, Sun M Y, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding [J]. J Mater. Process. Technol., 2020, 283: 116733.
34 Wang S, Liu B X, Chen C X, et al. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios [J]. J. Alloys Compd., 2018, 766: 517
35 Wang H T, Han E H. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water [J]. Comput. Mater. Sci., 2018, 149: 143
36 Ma X Y, Zhang Q, Chen X, et al. Inter-diffusion behavior of Ni/Fe/Ni laminated composite for magnetic and electromagnetic interference shielding [J]. Vacuum, 2015, 119: 196
37 Tian N N, Guan J T, Zhang C L, et al. Influence of high-current pulsed electron beam irradiation on element diffusion behavior and mechanical properties of TC4/304 stainless steel diffusion bonded joints [J]. Mater. Charact., 2023, 198: 112713
38 Chen C X, Liu M Y, Liu B X, et al. Tensile shear sample design and interfacial shear strength of stainless steel clad plate [J]. Fusion Eng. Des., 2017, 125: 431
39 Zhong Z H, Hinoki T, Jung H C, et al. Microstructure and mechanical properties of diffusion bonded SiC/steel joint using W/Ni interlayer [J]. Mater. Des., 2010, 31: 1070
40 Luo S G. Effect of grain size on grain boundary diffusion process and properties of sintered NdFeB [D]. Ganzhou: JiangXi University of Science and Technology, 2022
40 罗三根. 晶粒尺寸对烧结钕铁硼晶界扩散行为及性能的影响 [D]. 赣州: 江西理工大学, 2022
41 Wu H. Microstructure evolution and element migration (diffusion) behavior of a Ni-based alloy processed by surface mechanical rolling treatment [D]. Nanjing: Nanjing University of Science and Technology, 2020
41 吴 豪. 表面机械滚压处理镍基合金结构演化和元素迁移与扩散行为的研究 [D]. 南京: 南京理工大学, 2020
42 Liu B X, Wang S, Chen C X, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Appl. Surf. Sci., 2019, 463: 121
doi: 10.1016/j.apsusc.2018.08.221
43 Eich S M, Kasprzak M, Gusak A, et al. On the mechanism of diffusion-induced recrystallization: Comparison between experiment and molecular dynamics simulations [J]. Acta Mater., 2012, 60: 3469
44 Velmurugan C, Senthilkumar V, Sarala S, et al. Low temperature diffusion bonding of Ti-6Al-4V and duplex stainless steel [J]. J. Mater. Process. Technol., 2016, 234: 272
45 Li Z, Zhao J W, Jia F H, et al. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment [J]. Mater. Sci. Eng., 2020, A787: 139513
46 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
47 Zhang Q F, Zhao J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method [J]. Intermetallics, 2013, 34: 132 ***********************************************************************************************************
47 作 者 勘 误
[1] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[2] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[3] 王敏婷; 杜凤山; 李学通; 郑炀曾 . 楔横轧轴类件热变形时奥氏体微观组织演变的预测[J]. 金属学报, 2005, 41(2): 118-122 .
[4] 赵九洲; 胡壮麒 . 偏晶合金液--液相变过程模拟[J]. 金属学报, 2004, 40(1): 27-30 .