Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1555-1566    DOI: 10.11900/0412.1961.2023.00500
  研究论文 本期目录 | 过刊浏览 |
TC18钛合金大尺寸 β 晶粒制备及典型织构对力学性能的影响
颜孟奇(), 吴泽浩, 佟健博, 黄利军, 黄驿胜
中国航发北京航空材料研究院 北京 100095
Preparation of Large-Sized β Grains and Effect of Typical Textures on Mechanical Properties of TC18 Titanium Alloy
YAN Mengqi(), WU Zehao, TONG Jianbo, HUANG Lijun, HUANG Yisheng
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

颜孟奇, 吴泽浩, 佟健博, 黄利军, 黄驿胜. TC18钛合金大尺寸 β 晶粒制备及典型织构对力学性能的影响[J]. 金属学报, 2025, 61(10): 1555-1566.
Mengqi YAN, Zehao WU, Jianbo TONG, Lijun HUANG, Yisheng HUANG. Preparation of Large-Sized β Grains and Effect of Typical Textures on Mechanical Properties of TC18 Titanium Alloy[J]. Acta Metall Sin, 2025, 61(10): 1555-1566.

全文: PDF(5519 KB)   HTML
摘要: 

为了探索通过控制织构制备大尺寸β相晶粒的方法,并系统研究β相典型织构对钛合金室温拉伸和冲击性能的影响规律,本工作通过6火次α + β两相区锻造、1火次准β相区锻造以及高温退火制备了包含{100}取向β相晶粒(晶粒尺寸大于50 mm × 50 mm × 100 mm)的TC18钛合金试样,检测了典型方向的室温拉伸及冲击性能,并利用SEM及EBSD等技术研究了制备过程中的组织及织构演变规律。结果表明,仅改变β相的取向即可极大影响TC18钛合金的关键力学性能,大尺寸β相晶粒<111>方向的强度、弹性模量及冲击韧性最高,<100>方向最低,<110>方向介于2者之间且与无织构状态下接近。在锻造过程中,大尺寸{100}晶粒在坯料横截面心部形成,并随着锻造火次的增多逐渐向表面长大,其中晶粒长大是通过相近取向的晶粒发生亚晶界合并完成的。

关键词 TC18钛合金β织构制备性能    
Abstract

Compared with α + β titanium alloys, near-β titanium alloys exhibit higher specific strength, better strength-toughness matching, superior hardenability, and greater hot and cold forming capabilities. They are widely used as main load-bearing components in advanced aviation vehicles. During the preparation of titanium alloys, the content, grain shape, and grain size of the primary α phase and secondary α phase are often controlled through thermal deformation and heat treatment, which affect the overall properties of titanium alloys. In recent years, research has revealed that the grain size and orientation within the original β phases also impact crucial properties of titanium alloys such as their strength, plasticity, and fracture toughness. This is because on the one hand, during the phase transformation of titanium alloys from β phase to α phase, the morphology, size, and orientation of the α phase are directly controlled by the β phase; on the other hand, the titanium alloy still contains residual β phase in the service state, which exerts a particularly considerable impact on near-β titanium alloys. To explore methods for preparing large β grains through the control of texture and to systematically investigate the effect of typical β phase textures on the room-temperature tensile and impact properties of titanium alloys, TC18 titanium alloy billet having {100} oriented β grain (exceeding 50 mm × 50 mm × 100 mm) was prepared using six-pass forging at α + β region, one-pass forging at quasi-β region, and high-temperature annealing. The tensile and impact toughness at 20 oC were measured in the <100>, <110>, and <111> directions of the large β grain, while SEM and EBSD were employed to study the microstructure and texture evolution during the preparation process. During forging at α + β region, the billet was compressed in length direction by 50% and was stretched to its original size at 30 oC below transformation temperature (Tβ ). During forging at quasi-β region, the billet was compressed in length direction by 30% at 15 oC above Tβ. The high temperature annealing involved holding the billet at 25 oC above Tβ for 12 h, followed by water quenching. The results showed that the key mechanical properties of TC18 titanium alloy were considerably affected by the change in the orientation of the β phase. For the large β grains of TC18 titanium alloy, the highest values for strength, elastic modulus, and impact toughness were observed in the <111> direction and then in the <110> direction, whereas the lowest values for these properties were observed in the <100> direction. The strength, elastic modulus, and impact toughness in the <110> direction were similar to those without the β phase texture. The samples having a strong <111> β phase texture showed a 14.8% higher in tensile strength, a 12.2% higher in yield strength, a 13.6% higher in impact toughness, and only a slight decrease in plasticity than samples without an obvious β phase texture. Large {100} grains formed at the center of the billets' cross section during forging, and they gradually grew toward the surface with increasing forging times; this phenomenon was facilitated by the subgrain boundary merging of grains having a similar orientation.

Key wordsTC18 titanium alloy    β phase    texture    preparation    property
收稿日期: 2023-12-29     
ZTFLH:  TG146.2  
通讯作者: 颜孟奇,yanmengqi123@163.com,主要从事钛合金的研究
作者简介: 颜孟奇,男,1985年生,高级工程师,博士
图1  TC18钛合金坯料锻造工艺示意图
图2  TC18钛合金坯料力学性能测试试样的取样位置示意图及试样尺寸图
图3  TC18钛合金低倍片中显微组织观测试样的取样位置示意图
图4  α + β两相区锻造3火次后TC18钛合金坯料各位置横截面的SEM像
图5  α + β两相区锻造3火次后TC18钛合金坯料各位置β相的晶粒取向分布图、再结晶变形晶粒分布图和极图
图6  α + β两相区锻造3火次后TC18钛合金坯料心部和表面α相及β相的晶粒取向分布图和极图
图7  α + β两相区锻造6火次后TC18钛合金坯料横截面各位置的SEM像
图8  α + β两相区锻造6火次后TC18钛合金坯料各位置β相的晶粒取向分布图、再结晶晶粒分布图和极图
图9  α + β两相区锻造6火次后TC18钛合金坯料表面α相及β相的晶粒取向分布图和极图
图10  准β相区锻造后TC18钛合金坯料端部及中心横截面的低倍组织
图11  准β相区锻造后TC18钛合金坯料各位置β相的晶粒取向分布图、再结晶晶粒分布图和极图
图12  准β相区锻造后TC18钛合金坯料心部和表面α及β相的EBSD晶粒取向分布图和极图
图13  高温退火后TC18钛合金坯料横截面β晶粒的晶粒取向分布图
图14  高温退火后TC18钛合金坯料中大尺寸{100}取向β晶粒及其周围晶粒的衬度图、晶粒取向分布图和再结晶晶粒分布图
图15  高温退火后TC18钛合金坯料中大尺寸{100}取向β晶粒内部的SEM像
Direction

Rm

MPa

Rp0.2

MPa

A

%

Z

%

E

GPa

aku

J·cm-2

<100>98293614.036.69626.25
97993616.755.69631.25
<110>1129108112.528.411852.50
1145107210.927.411540.00
<111>1328127511.156.012558.75
1328127611.758.312453.75
No texture1157113616.551.611049.50
表1  TC18钛合金坯料沿不同方向测试的力学性能
图16  热处理态TC18钛合金锻坯中<111>织构试样和无织构试样的OM像
[1] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and Application [M]. Beijing: Chemical Industry Press, 2005: 1
[1] 张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1
[2] Huang X, Zhu Z S, Wang H H. Advanced Arenautical Titanium Alloys and Applications [M]. Beijing: National Defense Industry Press, 2012: 1
[2] 黄 旭, 朱知寿, 王红红. 先进航空钛合金材料与应用 [M]. 北京: 国防工业出版社, 2012: 1
[3] Sha A X, Wang Q R, Li X W. Research and application of high-strength titanium alloys used in airplane structure [J]. Chin. J. Rare Met., 2004, 28: 239
[3] 沙爱学, 王庆如, 李兴无. 航空用高强度结构钛合金的研究及应用 [J]. 稀有金属, 2004, 28: 239
[4] Sun Y K, Zhang W. Development and research status of materials used for landing gear of civil aircraft [J]. Hot Work. Technol., 2018, 47(20): 22
[4] 孙艳坤, 张 威. 民机起落架用材料的发展与研究现状 [J]. 热加工工艺, 2018, 47(20): 22
[5] Zhu Z S, Shang G Q, Wang X N, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications [J]. J. Aeronaut. Mater., 2020, 40(3): 1
[5] 朱知寿, 商国强, 王新南 等. 航空用钛合金显微组织控制和力学性能关系 [J]. 航空材料学报, 2020, 40(3): 1
doi: 10.11868/j.issn.1005-5053.2020.000086
[6] Zhao Y Q, Zeng W D, Lin C. Development of quantitative research in titanium alloys [J]. Mater. China, 2014, 33: 535
[6] 赵永庆, 曾卫东, 林 成. 钛合金的定量研究进展 [J]. 中国材料进展, 2014, 33: 535
[7] Wang H, Zhao Y Q, Xin S W, et al. Review thermomechanical processing and microstructure of high strength-toughness titanium alloy [J]. J. Aeronaut. Mater., 2018, 38(4): 56
[7] 王 欢, 赵永庆, 辛社伟 等. 高强韧钛合金热加工技术与显微组织 [J]. 航空材料学报, 2018, 38(4): 56
[8] Xue S, Zhou J, Xiong Y S, et al. Study on microstructure control and mechanical property TA15 alloy large-scale whole frame die forging [J]. Hot Work. Technol., 2011, 40(15): 19
[8] 薛 松, 周 杰, 熊运森 等. TA15钛合金大型整框模锻件组织控制及性能研究 [J]. 热加工工艺, 2011, 40(15): 19
[9] Zhang Y Q, Guo H Z, Sun H L, et al. Effect of heat treatment on microstructure and mechanical properties of TC18 titanium alloy [J]. Mater. Heat Treat., 2012, 41(6): 147
[9] 张永强, 郭鸿镇, 孙红兰 等. 热处理对TC18合金显微组织和力学性能的影响 [J]. 材料热处理技术, 2012, 41(6): 147
[10] Markovsky P E, Matviychuk Y V, Bondarchuk V I. Influence of grain size and crystallographic texture on mechanical behavior of TIMETAL-LCB in metastable β-condition [J]. Mater. Sci. Eng., 2013, A559: 782
[11] Ma B F, Ren L, Gao T, et al. Effect of β grain size and cooling rate of double aging heat treatment on microstructure and mechanical properties of TB3 titanium alloy [J]. Titan. Ind. Prog., 2018, 35(2): 31
[11] 马保飞, 任 璐, 高 婷 等. β晶粒尺寸及双时效炉冷速率对TB3钛合金组织与性能的影响 [J]. 钛工业进展, 2018, 35(2): 31
[12] Ma Y J, Liu J R, Lei J F, et al. β-grain growth and influence of its grain size on damage-tolerance property in titanium alloy [J]. Rare Met. Mater. Eng., 2009, 38: 976
[12] 马英杰, 刘建荣, 雷家峰 等. 钛合金β晶粒生长规律及晶粒尺寸对损伤容限性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 976
[13] Yan M Q, Zhang Y Q, Li K, et al. Analysis of bright band formation in Ti-55531 titanium alloy forging [J]. Chin. J. Rare Met., 2016, 40: 534
[13] 颜孟奇, 张业勤, 李 凯 等. Ti-55531钛合金自由锻件亮带形成原因分析 [J]. 稀有金属, 2016, 40: 534
[14] Bhattacharjee A, Varma V K, Kamat S V, et al. Influence of β grain size on tensile behavior and ductile fracture toughness of titanium alloy Ti-10V-2Fe-3Al [J]. Metall. Mater. Trans., 2006, 37A: 1423
[15] Deng Y T, Li S Q, Huang X. Anisotropy of mechanical properties of β processed TC17 titanium alloy [J]. Chin. J. Rare Met., 2018, (8): 885
[15] 邓雨亭, 李四清, 黄 旭. β锻TC17钛合金力学性能各向异性研究 [J]. 稀有金属, 2018, (8): 885
[16] Obasi G C, Birosca S, Quinta F J, et al. Effect of β grain growth on variant selection and texture memory effect during αβα phase transformation in Ti-6 Al-4V [J]. Acta Mater., 2012, 60: 1048
[17] Obasi G C, da Fonseca J Q, Rugg D, et al. The effect of β grain coarsening on variant selection and texture evolution in a near-β Ti alloy [J]. Mater. Sci. Eng., 2013, A576: 272
[18] Yan M Q, Chen L Q, Yang P, et al. Effect of hot deformation parameters on the evolution of microstructure and texture of β phase in TC18 titanium alloy [J]. Acta Metall. Sin., 2021, 57: 880
[18] 颜孟奇, 陈立全, 杨 平 等. 热变形参数对TC18钛合金β相组织及织构演变规律的影响 [J]. 金属学报, 2021, 57: 880
doi: 10.11900/0412.1961.2020.00352
[19] Yan M Q, Sha A X, Li K, et al. Effect of annealing temperature on microstructure and texture evolution of TC18 titanium alloy [J]. Rare Met. Mater. Eng., 2017, 46(suppl.): 156
[19] 颜孟奇, 沙爱学, 李 凯 等. 退火温度对TC18钛合金组织及织构演变规律的影响 [J]. 稀有金属材料与工程, 2017, 46(): 156
[20] Yan M Q, Sha A X, Zhang W F, et al. Recovery and recrystallization behavior of large sized β phase grains in TC18 titanium alloy during annealing process [J]. Mater. Sci. Forum, 2015, 817: 263
[21] Zhu Z S, Wang Q R, Zheng Y L. Quasi-β forging process of titanium alloys [P]. Chin Pat, 01131237. 8, 2001
[21] 朱知寿, 王庆如, 郑永灵. 钛合金准β锻造工艺 [P]. 中国专利, 01131237. 8, 2001))
[22] Džubinský M, Kováč F, Černı́k M. Secondary recrystallization kinetics in GO electrotechnical steels [J]. J. Magn. Magn. Mater., 2000, 215-216: 83
[23] Takamiya T, Kurosawa M, Komatsubara M. Effect of hydrogen content in the final annealing atmosphere on secondary recrystallization of grain-oriented Si steel [J]. J. Magn. Magn. Mater., 2003, 254-255: 334
[24] Taleff E M, Pedrazas N A. A new route for growing large grains in metals [J]. Science, 2013, 341: 1461
doi: 10.1126/science.1245056 pmid: 24072912
[25] Omori T, Kusama T, Kawata S, et al. Abnormal grain growth induced by cyclic heat treatment [J]. Science, 2013, 341: 1500
doi: 10.1126/science.1238017 pmid: 24072918
[26] Ciulik J, Taleff E M. Dynamic abnormal grain growth: A new method to produce single crystals [J]. Scr. Mater., 2009, 61: 895
[27] He D. Quantitative research on micro-plastic deformation mechanism and microstructure evolution of polycrystal-dual phase titanium alloy [D]. Harbin: Harbin Institute of Technology, 2012
[27] 何 东. 双相多晶钛合金微观塑性变形机理与组织演化的定量研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
[28] Engler O, Randle V. Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping [M]. 2nd Ed., Boca Raton: CRC Press, 2009: 3
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 毕健浩男, 张艳, 王振玉, 周晟昊, 刘永跃, 张小岩, 汪爱英. Mo含量对CrAlMoN涂层微观结构、力学性能及摩擦学性能的影响[J]. 金属学报, 2025, 61(9): 1413-1424.
[5] 谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
[6] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[7] 吴泽威, 颜俊雄, 胡励, 韩修柱. 双峰分离非基面织构AZ31镁合金板材反常中温轧制变形行为及机理[J]. 金属学报, 2025, 61(8): 1165-1173.
[8] 朱春健, 李艳辉, 朱正旺, 吴立成, 张海峰, 张伟. B含量调控Fe98.5 -x B x Cu1.5 纳米晶合金组织结构和磁性能[J]. 金属学报, 2025, 61(8): 1174-1182.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[10] 徐小严, 方超, 邱建科, 张蒙蒙, 史栋刚, 马英杰, 雷家峰, 杨锐. 峰值应力对Ti6242压气机盘锻件室温保载效应的影响[J]. 金属学报, 2025, 61(8): 1141-1152.
[11] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[12] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工改性Mg-5Zn合金的显微组织与耐腐蚀性能[J]. 金属学报, 2025, 61(7): 1071-1081.
[13] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[14] 郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
[15] 游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874.