|
|
喷射成形工艺对M3高速钢碳化物特征及力学性能的影响 |
刘继浩1,2, 迟宏宵1( ), 武会宾2, 马党参1, 周健1, 谷金波1 |
1.钢铁研究总院 特殊钢研究所 北京 100081 2.北京科技大学 钢铁共性技术协同创新中心 北京 100083 |
|
Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel |
LIU Jihao1,2, CHI Hongxiao1( ), WU Huibin2, MA Dangshen1, ZHOU Jian1, GU Jinbo1 |
1.Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China 2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
Jihao LIU,
Hongxiao CHI,
Huibin WU,
Dangshen MA,
Jian ZHOU,
Jinbo GU.
Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel[J]. Acta Metall Sin, 2025, 61(8): 1229-1244.
[1] |
Barkalow R H, Kraft R W, Goldstein J I. Solidification of M2 high speed steel [J]. Metall. Trans., 1972, 3: 919
|
[2] |
Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
|
[3] |
Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scr. Mater., 1998, 39: 1133
|
[4] |
Holzgruber W, Holzgruber H. Recent innovations in electroslag remelting [J]. Iron Steelmaker, 1998, 25: 107
|
[5] |
Halfa H, Reda A M. Electroslag remelting of high technological steels [J]. J. Miner. Mater. Charact. Eng., 2015, 3: 444
|
[6] |
Bombač D, Terčelj M, Fazarinc M, et al. On the increase of intrinsic workability and hot working temperature range of M42 ledeburitic super high steel in as-cast and wrought states [J]. Mater. Sci. Eng., 2017, A703: 438
|
[7] |
Hwang K C, Lee S, Lee H C. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part II. Fracture behavior [J]. Mater. Sci. Eng., 1998, A254 : 296
|
[8] |
Hetzner D W. Refining carbide size distributions in M1 high speed steel by processing and alloying [J]. Mater. Charact., 2001, 46: 175
|
[9] |
Pan Y, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5Cr4V2Co5Nb (825 K) high speed steel [J]. Mater. Sci. Eng., 2020, A787: 139480
|
[10] |
Du G, Li J, Wang Z B. Control of carbide precipitation during electroslag remelting-continuous rapid solidification of GCr15 steel [J]. Metall. Mater. Trans., 2017, 48B: 2873
|
[11] |
Li W M, Jiang Z H, Zang X M, et al. Carbide segregation control in electro-slag remelting withdrawal process of large cross-section high-speed steels [J]. J. Cent. South Univ. (Sci. Technol.), 2017, 48: 1697
|
[11] |
李万明, 姜周华, 臧喜民 等. 抽锭电渣重熔大截面高速钢过程的碳化物偏析控制 [J]. 中南大学学报(自然科学版), 2017, 48: 1697
|
[12] |
Kirk F A. Problems in high-speed steel manufacture and use: A challenge for economic powder metallurgy processing [J]. Powder Metall., 1981, 24: 70
|
[13] |
Wright C S, Wronski A S, Iturriza I. Development of robust processing routes for powder metallurgy high speed steels [J]. Mater. Sci. Technol., 2000, 16: 945
|
[14] |
Henein H. Why is spray forming a rapid solidification process? [J]. Materialwiss. Werkst., 2010, 41: 555
|
[15] |
Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Mater. Sci. Forum, 2005, 498-499: 244
|
[16] |
Schulz A, Matthaei-Schulz E, Spangel S, et al. Analysis of spray formed tool steels [J]. Materialwiss. Werkst., 2003, 34: 478
|
[17] |
Schruff I, Schüler V, Spiegelhauer C, et al. Advanced tool steels produced via spray forming [A]. 6th International Tooling Conference [C]. Sweden, 2002: 1159
|
[18] |
Zhao S L. Research of microstructure and properities of spray formed high alloyed high speed steel [D]. Shanghai: Shanghai University, 2017
|
[18] |
赵顺利. 喷射成形高合金高速钢的组织与性能研究 [D]. 上海: 上海大学, 2017
|
[19] |
Wang H B, Hou L G, Zhang J X, et al. Microstructures and properties of spray formed Nb-containing M3 high speed steel [J]. Acta Metall. Sin., 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
|
[19] |
王和斌, 侯陇刚, 张金祥 等. 喷射成形含铌M3型高速钢组织与性能研究 [J]. 金属学报, 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
|
[20] |
Wei K, Xu Y, Liu X, et al. Microstructure and properties of high vanadium steel with 9% vanadium fabricated by spray forming- hot isostatic pressing [J]. Powder Metall. Ind., 2012, 22(3): 21
|
[20] |
魏 宽, 徐 轶, 刘 宪 等. 喷射成形—热等静压9V高钒钢的组织与性能研究 [J]. 粉末冶金工业, 2012, 22(3): 21
|
[21] |
Xu Y, Ge C C, Wei K, et al. Research on preparation technology of high-vanadium HSS by spray forming [J]. Powder Metall. Technol., 2012, 30: 22
|
[21] |
徐 轶, 葛昌纯, 魏 宽 等. 喷射成形高钒高速钢环坯制备技术研究 [J]. 粉末冶金技术, 2012, 30: 22
|
[22] |
Ghomashchi M R, Sellars C. Microstructural changes in as-cast M2 grade high speed steel during hot forging [J]. Metall. Trans., 1993, 24A: 2171
|
[23] |
Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans., 1998, 29A: 1395
|
[24] |
Jia Y Z, Wu Y P, Kuang X G, et al. Tempering characteristics of conventional high-speed steel EM42 and powder metallurgical high-speed steel ASP2042 [J]. Heat Treat. Met., 2018, 43(6): 211
|
[24] |
贾寓真, 吴懿萍, 匡旭光 等. 传统冶炼高速钢EM42与粉末冶金高速钢ASP2042的回火特性 [J]. 金属热处理, 2018, 43(6): 211
|
[25] |
El Rakayby A M, Mills B. Tempering and secondary hardening of M42 high-speed steel [J]. Mater. Sci. Technol., 1986, 2: 175
|
[26] |
Liu J H, Chi H X, Wu H B, et al. Heat treatment related microstructure evolution and low hardness issure of spray forming M3 high speed steel [J]. Chin. J. Mater. Res., 2023, 37: 625
|
[26] |
刘继浩, 迟宏宵, 武会宾 等. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题 [J]. 材料研究学报, 2023, 37: 625
doi: 10.11901/1005.3093.2022.493
|
[27] |
Xu Y. Microstructure and properties of spray forming FGH4095 superalloy and 9V high speed steel [D]. Southwest Jiaotong University, 2012
|
[27] |
徐 轶. 喷射成形FGH4095高温合金及9V高速钢组织性能研究 [D]. 成都: 西南交通大学, 2012
|
[28] |
Li J R, He T, Zhang P F, et al. Effect of large-size carbides on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants [J]. Mater. Charact., 2020, 159: 110025
|
[29] |
Johansson H, Sandström R. Fracture behaviour and fracture toughness of M2 high speed steel [J]. Mater. Sci. Eng., 1978, 36: 175
|
[30] |
Xu Y W, Wang H M. Microstructure and room-temperature dry sliding wear behavior of Mo2Ni3Si/γ dual-phase alloy [J]. Acta Metall. Sin., 2006, 42: 722
|
[30] |
徐亚伟, 王华明. Mo2Ni3Si/γ双相合金的显微组织及室温干滑动磨损行为研究 [J]. 金属学报, 2006, 42: 722
|
[31] |
Fordyce I, Annasamy M, Sun S D, et al. The effect of heat treatment on the abrasive and erosive wear behaviour of laser metal deposited Fe-28Cr-2.7C alloy [J]. Wear, 2020, 458-459: 203410
|
[32] |
Wei S Z, Xu L J, Zhu J H, et al. Effect of carbon and vanadium content on microstructure and mechanical properties of high vanadium high speed steel [J]. J. Iron Steel Res., 2005, 17(5): 66
|
[32] |
魏世忠, 徐流杰, 朱金华 等. 碳、钒含量对高钒高速钢组织和力学性能的影响 [J]. 钢铁研究学报, 2005, 17(5): 66
|
[33] |
Liu H F, Liu Y H, Yu S R. Investigation of the wear resistance of high carbon high vanadium high speed steel [J]. Tribology, 2000, 20: 401
|
[33] |
刘海峰, 刘耀辉, 于思荣. 高碳高钒系高速钢的耐磨性研究 [J]. 摩擦学学报, 2000, 20: 401
|
[34] |
Rodenburg C, Rainforth W M. A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact [J]. Acta Mater., 2007, 55: 2443
|
[35] |
Bergman F, Hedenqvist P, Hogmark S. The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels [J]. Tribol. Int., 1997, 30: 183
|
[36] |
Gore G J, Gates J D. Effect of hardness on three very different forms of wear [J]. Wear, 1997, 203-204: 544
|
[37] |
Wang Y, Su M, Chen C N. The influence of normal load and sliding speed on dry sliding friction of steel GCr15 [J]. Tribology, 1993, 13: 263
|
[37] |
王 铀, 苏 梅, 陈赤囡. 法向载荷和滑动速度对GCr15钢干滑动摩擦的影响 [J]. 摩擦学学报, 1993, 13: 263
|
[38] |
Stott F H, Wood G C. The influence of oxides on the friction and wear of alloys [J]. Tribol. Int., 1978, 11: 211
|
[39] |
Quinn T F J. Oxidational wear modelling Part III. The effects of speed and elevated temperatures [J]. Wear, 1998, 216: 262
|
[40] |
Wilson J E, Stott F H, Wood G C. The development of wear-protective oxides and their influence on sliding friction [J]. Proc. Roy. Soc., 1980, 369A: 557
|
[41] |
Vardavoulias M. The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials [J]. Wear, 1994, 173: 105
|
[42] |
Guo J, Feng Y L, Liu L G, et al. Investigation of microstructural damage to eutectic carbides from scratch tests of a heat-treated Fe-Cr-W-Mo-V-C alloy [J]. Wear, 2016, 358-359: 137
|
[43] |
Iakovakis E, Roy M J, Gee M, et al. Evaluation of wear mechanisms in additive manufactured carbide-rich tool steels [J]. Wear, 2020, 462-463: 203449
|
[44] |
Kumar K S, Lawley A, Koczak M J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material [J]. Metall. Trans., 1991, 22A: 2733
|
[45] |
Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels [J]. Metall. Mater. Trans., 2016, 47A: 842
|
[46] |
Liotti E, Arteta C, Zisserman A, et al. Crystal nucleation in metallic alloys using X-ray radiography and machine learning [J]. Sci. Adv., 2018, 4: eaar4004
|
[47] |
Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin., 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
|
[47] |
李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|