Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1229-1244    DOI: 10.11900/0412.1961.2023.00318
  研究论文 本期目录 | 过刊浏览 |
喷射成形工艺对M3高速钢碳化物特征及力学性能的影响
刘继浩1,2, 迟宏宵1(), 武会宾2, 马党参1, 周健1, 谷金波1
1.钢铁研究总院 特殊钢研究所 北京 100081
2.北京科技大学 钢铁共性技术协同创新中心 北京 100083
Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel
LIU Jihao1,2, CHI Hongxiao1(), WU Huibin2, MA Dangshen1, ZHOU Jian1, GU Jinbo1
1.Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
Jihao LIU, Hongxiao CHI, Huibin WU, Dangshen MA, Jian ZHOU, Jinbo GU. Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel[J]. Acta Metall Sin, 2025, 61(8): 1229-1244.

全文: PDF(7832 KB)   HTML
摘要: 

喷射成形是一种先进的材料制备工艺,具有成本低、流程短、绿色化等技术优势。我国虽已基本实现喷射成形工模具钢的规模化生产,但对喷射成形高速钢组织和性能特征的掌握仍不够深入。本工作以喷射成形、电渣重熔和粉末冶金3种制备技术生产的M3高速钢为研究对象,系统对比、研究了制备工艺对M3高速钢组织特征和力学性能的影响。结果表明,在退火组织方面,喷射成形和粉末冶金高速钢横、纵截面中的碳化物均呈弥散的颗粒状分布,但喷射成形高速钢的碳化物尺寸较大;电渣重熔高速钢横截面碳化物呈网状分布,纵截面碳化物呈带状分布。在力学性能方面,粉末冶金高速钢>电渣重熔高速钢>喷射成形高速钢,钢中碳化物分布越均匀、尺寸越细小,相应的硬度、抗弯强度和冲击韧性越高。在耐磨性能方面,喷射成形高速钢最优,钢中大尺寸的MC型碳化物不仅具有优异的抗磨效果,而且能够改变氧化层的形成方式,减少裂纹在基体中的扩展,提高耐磨性能。基于喷射成形M3高速钢的微观组织特征,分析了M3高速钢在喷射成形过程中的碳化物析出行为。

关键词 喷射成形M3高速钢碳化物力学性能    
Abstract

High-speed steel typically comprises a high carbon content with an abundance of alloying elements, leading to a solidified microstructure rich in carbides. The refinement of these carbides in the microstructure is the most effective method for enhancing the mechanical properties of high-speed steel, and it remains a primary focus of the high-speed steel research. The prevalent industrial production methods for high-speed steel include traditional casting and forging, powder metallurgy, and spray forming. Traditional casting and forging methods are often constrained by segregation issues, hindering the application of high-quality cast and forged high-speed steel. Powder metallurgy high-speed steel exhibits remarkable mechanical properties; however, its high production costs have restricted its broader development. Conversely, spray forming is an advanced manufacturing method characterized by cost effectiveness, efficient production, and environmental friendliness. Although China has successfully implemented the mass production of spray-formed tool and die steel, systematic research on the microstructure and properties of such steel in actual industrial preparation is lacking. This study conducts a comparative analysis of the microstructure and mechanical properties of the M3 high-speed steel prepared via three distinct methods: electroslag remelting, spray forming, and powder metallurgy. The experimental results show that although the different preparation methods exert minimal impact on the carbide type within the annealed microstructure of the M3 high-speed steel, they considerably affect the morphology, size, and distribution of the carbides. Spray-formed and powder metallurgy high-speed steels display a dispersed, particulate carbide distribution across transverse and longitudinal sections, with spray-formed steel exhibiting coarser carbide sizes. Electroslag remelted high-speed steel exhibits a network-like distribution of carbides in the transverse sections and a distinct banded arrangement in the longitudinal sections. The mechanical properties of powder metallurgy high-speed steel were superior to those of electroslag remelted and spray-formed high-speed steels. The more uniform and finer the distribution of carbides within the steel microstructure, the higher will be their hardness, bending strength, and impact toughness. Regarding wear resistance, spray-formed high-speed steel outperforms the others, which is attributed to the presence of large-sized MC-type carbides in its microstructure. These carbides not only provide better wear resistance, but also change the formation of the oxidation layer from diffusion mechanism to sintering mechanism, thereby reducing crack propagation in the matrix and enhancing wear resistance. This study delves into the carbide precipitation behavior of the M3 high-speed steel during the spray forming process based on the microstructural characteristics of the spray-formed steel.

Key wordsspray forming    M3 high-speed steel    carbide    mechanical property
收稿日期: 2023-07-29     
ZTFLH:  TG142.7  
通讯作者: 迟宏宵,chihongxiao@163.com,主要从事工模具钢的研究
Corresponding author: CHI Hongxiao, professor, Tel: (010)62182268, E-mail: chihongxiao@163.com
作者简介: 刘继浩,男,1992年生,博士
图1  电渣重熔(ESR)、喷射成形(SF)和粉末冶金(PM)工艺流程图
SteelCWMoCrVFe
SF-M31.325.805.804.423.10Bal.
ESR-M31.246.225.314.162.90Bal.
PM-M31.326.005.604.022.97Bal.
表1  不同制备工艺M3高速钢的化学成分 (mass fraction / %)
图2  不同制备工艺退火态M3高速钢横截面和纵截面中碳化物形貌及分布的OM像
图3  不同制备工艺M3高速钢中碳化物的定性和定量分析
图4  不同制备工艺M3高速钢560 ℃回火后的淬火温度-回火硬度曲线
图5  不同制备工艺M3高速钢的力学性能
图6  SF-M3高速钢纵向试样冲击断口形貌的SEM像
图7  ESR-M3高速钢纵向试样冲击断口形貌的SEM像
图8  PM-M3高速钢纵向试样冲击断口形貌的SEM像
图9  ESR-M3高速钢横向试样冲击断口形貌的SEM像及EDS面扫描图
图10  不同制备工艺M3高速钢摩擦磨损样品磨痕三维形貌和二维截面深度轮廓图
图11  不同制备工艺M3高速钢摩擦系数随滑动时间的变化
图12  SF-M3高速钢表面磨痕的SEM分析
图13  ESR-M3高速钢表面磨痕的SEM分析
图14  PM-M3高速钢表面磨痕的SEM分析
图15  不同制备工艺M3高速钢磨损机制示意图
图16  Thermol-Calc软件中Equilibrium模型的碳化物析出计算结果
[1] Barkalow R H, Kraft R W, Goldstein J I. Solidification of M2 high speed steel [J]. Metall. Trans., 1972, 3: 919
[2] Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels [J]. Metall. Trans., 1989, 20A: 2133
[3] Lee E S, Park W J, Baik K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scr. Mater., 1998, 39: 1133
[4] Holzgruber W, Holzgruber H. Recent innovations in electroslag remelting [J]. Iron Steelmaker, 1998, 25: 107
[5] Halfa H, Reda A M. Electroslag remelting of high technological steels [J]. J. Miner. Mater. Charact. Eng., 2015, 3: 444
[6] Bombač D, Terčelj M, Fazarinc M, et al. On the increase of intrinsic workability and hot working temperature range of M42 ledeburitic super high steel in as-cast and wrought states [J]. Mater. Sci. Eng., 2017, A703: 438
[7] Hwang K C, Lee S, Lee H C. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part II. Fracture behavior [J]. Mater. Sci. Eng., 1998, A254 : 296
[8] Hetzner D W. Refining carbide size distributions in M1 high speed steel by processing and alloying [J]. Mater. Charact., 2001, 46: 175
[9] Pan Y, Pi Z Q, Liu B W, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5Cr4V2Co5Nb (825 K) high speed steel [J]. Mater. Sci. Eng., 2020, A787: 139480
[10] Du G, Li J, Wang Z B. Control of carbide precipitation during electroslag remelting-continuous rapid solidification of GCr15 steel [J]. Metall. Mater. Trans., 2017, 48B: 2873
[11] Li W M, Jiang Z H, Zang X M, et al. Carbide segregation control in electro-slag remelting withdrawal process of large cross-section high-speed steels [J]. J. Cent. South Univ. (Sci. Technol.), 2017, 48: 1697
[11] 李万明, 姜周华, 臧喜民 等. 抽锭电渣重熔大截面高速钢过程的碳化物偏析控制 [J]. 中南大学学报(自然科学版), 2017, 48: 1697
[12] Kirk F A. Problems in high-speed steel manufacture and use: A challenge for economic powder metallurgy processing [J]. Powder Metall., 1981, 24: 70
[13] Wright C S, Wronski A S, Iturriza I. Development of robust processing routes for powder metallurgy high speed steels [J]. Mater. Sci. Technol., 2000, 16: 945
[14] Henein H. Why is spray forming a rapid solidification process? [J]. Materialwiss. Werkst., 2010, 41: 555
[15] Mesquita R A, Barbosa C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Mater. Sci. Forum, 2005, 498-499: 244
[16] Schulz A, Matthaei-Schulz E, Spangel S, et al. Analysis of spray formed tool steels [J]. Materialwiss. Werkst., 2003, 34: 478
[17] Schruff I, Schüler V, Spiegelhauer C, et al. Advanced tool steels produced via spray forming [A]. 6th International Tooling Conference [C]. Sweden, 2002: 1159
[18] Zhao S L. Research of microstructure and properities of spray formed high alloyed high speed steel [D]. Shanghai: Shanghai University, 2017
[18] 赵顺利. 喷射成形高合金高速钢的组织与性能研究 [D]. 上海: 上海大学, 2017
[19] Wang H B, Hou L G, Zhang J X, et al. Microstructures and properties of spray formed Nb-containing M3 high speed steel [J]. Acta Metall. Sin., 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
[19] 王和斌, 侯陇刚, 张金祥 等. 喷射成形含铌M3型高速钢组织与性能研究 [J]. 金属学报, 2014, 50: 1421
doi: 10.11900/0412.1961.2014.00216
[20] Wei K, Xu Y, Liu X, et al. Microstructure and properties of high vanadium steel with 9% vanadium fabricated by spray forming- hot isostatic pressing [J]. Powder Metall. Ind., 2012, 22(3): 21
[20] 魏 宽, 徐 轶, 刘 宪 等. 喷射成形—热等静压9V高钒钢的组织与性能研究 [J]. 粉末冶金工业, 2012, 22(3): 21
[21] Xu Y, Ge C C, Wei K, et al. Research on preparation technology of high-vanadium HSS by spray forming [J]. Powder Metall. Technol., 2012, 30: 22
[21] 徐 轶, 葛昌纯, 魏 宽 等. 喷射成形高钒高速钢环坯制备技术研究 [J]. 粉末冶金技术, 2012, 30: 22
[22] Ghomashchi M R, Sellars C. Microstructural changes in as-cast M2 grade high speed steel during hot forging [J]. Metall. Trans., 1993, 24A: 2171
[23] Lee E S, Park W J, Jung J Y, et al. Solidification microstructure and M2C carbide decomposition in a spray-formed high-speed steel [J]. Metall. Mater. Trans., 1998, 29A: 1395
[24] Jia Y Z, Wu Y P, Kuang X G, et al. Tempering characteristics of conventional high-speed steel EM42 and powder metallurgical high-speed steel ASP2042 [J]. Heat Treat. Met., 2018, 43(6): 211
[24] 贾寓真, 吴懿萍, 匡旭光 等. 传统冶炼高速钢EM42与粉末冶金高速钢ASP2042的回火特性 [J]. 金属热处理, 2018, 43(6): 211
[25] El Rakayby A M, Mills B. Tempering and secondary hardening of M42 high-speed steel [J]. Mater. Sci. Technol., 1986, 2: 175
[26] Liu J H, Chi H X, Wu H B, et al. Heat treatment related microstructure evolution and low hardness issure of spray forming M3 high speed steel [J]. Chin. J. Mater. Res., 2023, 37: 625
[26] 刘继浩, 迟宏宵, 武会宾 等. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题 [J]. 材料研究学报, 2023, 37: 625
doi: 10.11901/1005.3093.2022.493
[27] Xu Y. Microstructure and properties of spray forming FGH4095 superalloy and 9V high speed steel [D]. Southwest Jiaotong University, 2012
[27] 徐 轶. 喷射成形FGH4095高温合金及9V高速钢组织性能研究 [D]. 成都: 西南交通大学, 2012
[28] Li J R, He T, Zhang P F, et al. Effect of large-size carbides on the anisotropy of mechanical properties in 11Cr-3Co-3W martensitic heat-resistant steel for turbine high temperature blades in ultra-supercritical power plants [J]. Mater. Charact., 2020, 159: 110025
[29] Johansson H, Sandström R. Fracture behaviour and fracture toughness of M2 high speed steel [J]. Mater. Sci. Eng., 1978, 36: 175
[30] Xu Y W, Wang H M. Microstructure and room-temperature dry sliding wear behavior of Mo2Ni3Si/γ dual-phase alloy [J]. Acta Metall. Sin., 2006, 42: 722
[30] 徐亚伟, 王华明. Mo2Ni3Si/γ双相合金的显微组织及室温干滑动磨损行为研究 [J]. 金属学报, 2006, 42: 722
[31] Fordyce I, Annasamy M, Sun S D, et al. The effect of heat treatment on the abrasive and erosive wear behaviour of laser metal deposited Fe-28Cr-2.7C alloy [J]. Wear, 2020, 458-459: 203410
[32] Wei S Z, Xu L J, Zhu J H, et al. Effect of carbon and vanadium content on microstructure and mechanical properties of high vanadium high speed steel [J]. J. Iron Steel Res., 2005, 17(5): 66
[32] 魏世忠, 徐流杰, 朱金华 等. 碳、钒含量对高钒高速钢组织和力学性能的影响 [J]. 钢铁研究学报, 2005, 17(5): 66
[33] Liu H F, Liu Y H, Yu S R. Investigation of the wear resistance of high carbon high vanadium high speed steel [J]. Tribology, 2000, 20: 401
[33] 刘海峰, 刘耀辉, 于思荣. 高碳高钒系高速钢的耐磨性研究 [J]. 摩擦学学报, 2000, 20: 401
[34] Rodenburg C, Rainforth W M. A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact [J]. Acta Mater., 2007, 55: 2443
[35] Bergman F, Hedenqvist P, Hogmark S. The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels [J]. Tribol. Int., 1997, 30: 183
[36] Gore G J, Gates J D. Effect of hardness on three very different forms of wear [J]. Wear, 1997, 203-204: 544
[37] Wang Y, Su M, Chen C N. The influence of normal load and sliding speed on dry sliding friction of steel GCr15 [J]. Tribology, 1993, 13: 263
[37] 王 铀, 苏 梅, 陈赤囡. 法向载荷和滑动速度对GCr15钢干滑动摩擦的影响 [J]. 摩擦学学报, 1993, 13: 263
[38] Stott F H, Wood G C. The influence of oxides on the friction and wear of alloys [J]. Tribol. Int., 1978, 11: 211
[39] Quinn T F J. Oxidational wear modelling Part III. The effects of speed and elevated temperatures [J]. Wear, 1998, 216: 262
[40] Wilson J E, Stott F H, Wood G C. The development of wear-protective oxides and their influence on sliding friction [J]. Proc. Roy. Soc., 1980, 369A: 557
[41] Vardavoulias M. The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials [J]. Wear, 1994, 173: 105
[42] Guo J, Feng Y L, Liu L G, et al. Investigation of microstructural damage to eutectic carbides from scratch tests of a heat-treated Fe-Cr-W-Mo-V-C alloy [J]. Wear, 2016, 358-359: 137
[43] Iakovakis E, Roy M J, Gee M, et al. Evaluation of wear mechanisms in additive manufactured carbide-rich tool steels [J]. Wear, 2020, 462-463: 203449
[44] Kumar K S, Lawley A, Koczak M J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material [J]. Metall. Trans., 1991, 22A: 2733
[45] Zepon G, Ellendt N, Uhlenwinkel V, et al. Solidification sequence of spray-formed steels [J]. Metall. Mater. Trans., 2016, 47A: 842
[46] Liotti E, Arteta C, Zisserman A, et al. Crystal nucleation in metallic alloys using X-ray radiography and machine learning [J]. Sci. Adv., 2018, 4: eaar4004
[47] Li S S, Chen Y, Gong T Z, et al. Effect of cooling rate on the precipitation mechanism of primary carbide during solidification in high carbon-chromium bearing steel [J]. Acta Metall. Sin., 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
[47] 李闪闪, 陈 云, 巩桐兆 等. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响 [J]. 金属学报, 2022, 58: 1024
doi: 10.11900/0412.1961.2021.00024
[1] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[2] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[3] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[4] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[5] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[6] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[7] 赵广迪, 李阳, 姚晓雨, 王亮, 李渭滨, 潘玉华, 李维娟, 王兆宇. BFe-Cr-B-C合金凝固行为、强韧性及耐磨性的影响[J]. 金属学报, 2025, 61(5): 699-716.
[8] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[9] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[10] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[11] 蔡正清, 尹大伟, 杨靓, 王文祥, 王飞龙, 温永清, 马明臻. Ag替换CuZr-Ti-Cu-Al非晶合金性能的影响[J]. 金属学报, 2025, 61(4): 572-582.
[12] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[13] 欧阳思慧, 佘加, 陈先华, 潘复生. 可降解镁基复合材料的制备及其在骨科领域的研究进展[J]. 金属学报, 2025, 61(3): 455-474.
[14] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[15] 庞梦瑶, 巫瑞智, 马晓春, 靳思远, 于哲, Boris Krit. 热轧加工工艺对快速降解Mg-Li合金力学性能及腐蚀行为的影响[J]. 金属学报, 2025, 61(3): 509-520.