Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2023.00500
  本期目录 | 过刊浏览 |
TC18钛合金大尺寸β晶粒制备及典型织构对性能的影响
颜孟奇,吴泽浩,佟健博,黄利军,黄驿胜
中国航发北京航空材料研究院  北京 100095
Preparation of Large-Sized β Grains and Effect of Typical Textures on Properties of TC18 Titanium Alloy
YAN Mengqi, WU Zehao, TONG Jianbo, HUANG Lijun, HUANG Yisheng
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

颜孟奇 吴泽浩 佟健博 黄利军 黄驿胜. TC18钛合金大尺寸β晶粒制备及典型织构对性能的影响[J]. 金属学报, 10.11900/0412.1961.2023.00500.

全文: PDF(2692 KB)  
摘要:  近β钛合金主要通过控制α相的含量、形状及尺寸实现性能的调控,但原始β相的晶粒尺寸及取向也会对其强度、塑性等力学性能产生显著的影响。为了探索通过织构控制制备出大尺寸β相晶粒的方法,并系统研究β相典型织构对钛合金室温拉伸、室温冲击性能的影响规律,本工作通过6火次两相区锻造、1火次准β锻造、高温退火制备了包含尺寸大于50 mm × 50 mm × 100 mm的{100}取向β晶粒的TC18钛合金样品,检测了典型方向的室温拉伸及冲击性能,并利用SEM及EBSD等技术研究了制备过程中的组织及织构演变规律。结果表明:仅β相的取向改变可以极大影响TC18钛合金的关键力学性能:大尺寸β相晶粒<111>方向的强度、弹性模量及冲击韧性最高, <100>方向最低,<110>方向介于2者之间且与无织构状态下接近。大尺寸{100}晶粒是在锻造时于坯料横截面心部形成,并随着锻造火次的增多逐渐向表面长大的,其中晶粒长大是通过相近取向的晶粒发生亚晶界的合并完成的。
关键词 TC18钛合金β相织构制备性能    
Abstract:Compared with α + β titanium alloys, near-β titanium alloys exhibit higher specific strength, better strength–toughness matching, superior hardenability, and greater hot and cold forming capabilities. They are widely used as main load-bearing components in advanced aviation vehicles. During the preparation of titanium alloys, the content, grain shape and grain size of the primary α phase and secondary α phase are often controlled through thermal deformation and heat treatment, which affect the overall properties of titanium alloys. In recent years, research has revealed that the grain size and orientation within the original β phases also impact crucial properties of titanium alloys such as their strength, plasticity, and fracture toughness. This is because on the one hand, during the phase transformation of titanium alloys from β phase to α phase, the morphology, size, and orientation of the α phase are directly controlled by the β phase; on the other hand, the titanium alloy still contains residual β phase in the service state, which exerts a particularly considerable impact on near-β titanium alloys. To explore methods for preparing large β grains through the control of texture and to systematically investigate the effect of typical β phase textures on the room-temperature tensile and impact properties of titanium alloys, a TC18 titanium alloy billet having {100} oriented β grain sizes exceeding 50 mm × 50 mm × 100 mm were prepared using six-pass α + β forging, one-pass quasi-β forging, and high-temperature annealing. The tensile and impact toughness at 20oC were measured in the <100>, <110>, and <111> directions of the large β grain, while SEM and EBSD were employed to study the microstructure and texture evolution during the preparation process. During α + β forging, the billet was compressed in length direction by 50% and was stretched to its original size at 30oC below transformation temperature (Tβ). During quasi-β forging, the billet was compressed in length direction by 30% at 15oC above Tβ. The annealing at high temperature involved holding the billet at 25oC above Tβ for 12 h, followed by water quenching. The results showed that the key mechanical properties of TC18 titanium alloy were considerably affected by the change in the orientation of the β phase. In the large β grains of TC18 titanium alloy, the highest values for strength, elastic modulus, and impact toughness were observed in the <111> direction and then in the <110> direction, whereas the lowest values for these properties were observed in the <100> direction. The strength, elastic modulus, and impact toughness in the <110> direction were similar to those without the β phase texture. The samples having a strong <111> β phase texture showed a 14.8% higher in tensile strength, a 12.2% higher in yield strength, a 13.6% higher in impact toughness, and only a slight decrease in plasticity than samples without an obvious β phase texture. Large {100} grains formed at the center of the billets’ cross section during forging, and they gradually grew toward the surface with increasing forging times; this phenomenon was facilitated by the subgrain boundary merging of grains having a similar orientation.
Key wordsTC18 alloy    β phase    texture    preparation    property
收稿日期: 2023-12-29     
[1] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[2] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[3] 刘仲武, 周帮, 廖雪峰, 何家毅. 全高丰度稀土(Ce, La, Y)-Fe-B永磁的研究现状和未来发展[J]. 金属学报, 2024, 60(5): 585-604.
[4] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[5] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[6] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[7] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[8] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[9] 杨平, 马丹丹, 顾晨, 顾新福. 初始组织及冷轧压下量对工业低牌号电工钢相变织构及磁性能的影响[J]. 金属学报, 2024, 60(3): 377-387.
[10] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[11] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[12] 张楠, 张海武, 王淼辉. 微米级选区激光熔化316L不锈钢的拉伸力学性能[J]. 金属学报, 2024, 60(2): 211-219.
[13] 倪明杰, 刘仁慈, 周浩浩, 杨超, 葛术宇, 刘冬, 史凤岭, 崔玉友, 杨锐. 磨削深度对 γ-TiAl合金表面完整性和疲劳性能的影响[J]. 金属学报, 2024, 60(2): 261-272.
[14] 曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.
[15] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.