Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 837-847    DOI: 10.11900/0412.1961.2023.00332
  研究论文 本期目录 | 过刊浏览 |
低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能
郝旭邦1, 程伟丽1,2(), 李戬2, 王利飞1, 崔泽琴1, 闫国庆3, 翟凯3, 余晖4
1 太原理工大学 材料科学与工程学院 太原 030024
2 青海大学 盐湖化工大型系列研究设施 西宁 810016
3 山西瑞格金属新材料有限公司 运城 043800
4 河北工业大学 材料科学与工程学院 天津 300132
Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery
HAO Xubang1, CHENG Weili1,2(), LI Jian2, WANG Lifei1, CUI Zeqin1, YAN Guoqing3, ZHAI Kai3, YU Hui4
1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Salt Lake Chemical Engineering Research Complex, Qinghai University, Xining 810016, China
3 Shanxi Regal Advanced Material Co. Ltd., Yuncheng 043800, China
4 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China
引用本文:

郝旭邦, 程伟丽, 李戬, 王利飞, 崔泽琴, 闫国庆, 翟凯, 余晖. 低合金化Mg-Ag镁空气电池阳极材料的电化学行为和放电性能[J]. 金属学报, 2025, 61(6): 837-847.
Xubang HAO, Weili CHENG, Jian LI, Lifei WANG, Zeqin CUI, Guoqing YAN, Kai ZHAI, Hui YU. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. Acta Metall Sin, 2025, 61(6): 837-847.

全文: PDF(3945 KB)   HTML
摘要: 

镁空气电池具有高的理论放电电压(3.1 V)和比能量密度(6.8 kWh/kg),且结构简单、成本低廉、安全性高,是理想的储能设备。然而,目前镁空气电池能够实现的放电电压和能量密度远低于理论值。为了协同提升镁空气电池的放电电压和比能量密度,本工作开发了低合金化Mg-1Ag (质量分数,%)阳极材料并研究了其微观组织、电化学行为和放电性能。结果表明,挤压态合金主要由均匀的等轴晶组成,平均晶粒尺寸为(14.19 ± 2.27) μm,展现出基极垂直于横向的织构,织构强度为11.05,Ag元素存在局部偏聚。以Mg-1Ag阳极组装的镁空气电池,在10 mA/cm2的电流密度下放电过程平稳,电池电压和比能量密度分别为1.344 V和1374.34 mWh/g。镁空气电池优异的放电性能主要与金属Ag在电极表面的再沉积、多裂纹的放电产物膜和较高体积分数的非基面取向晶粒有关。

关键词 镁空气电池Mg-Ag合金微观组织放电性能电化学行为    
Abstract

Primary Mg-air batteries have attracted considerable attention in the field of standby emergency energy storage in the wilderness because of their high theoretical voltage (3.1 V) and appreciable specific energy (6.8 kWh/kg). However, because of the severe self-corrosion and sluggish anodic kinetics of Mg anodes, the actual performance of Mg-air batteries is far from the theoretical limits. To synergistically enhance the discharge voltage and specific energy of Mg-air batteries, a low-alloyed Mg-1Ag (mass fraction, %) anode was developed, and its microstructure, electrochemical behavior, and discharge properties were evaluated. The results showed that the extruded alloy mainly consisted of equiaxed grains with an average grain size of (14.19 ± 2.27) μm. The anode studied exhibited a typical extrusion texture with a basal pole perpendicular to the transverse direction, and the texture intensity was 11.05. Additionally, the extruded alloy was shown to exhibit localized segregation of Ag. The Mg-air battery based on the Mg-1Ag alloy as the anode exhibited a stable discharge process. In addition, the cell voltage and specific energy reached 1.344 V and 1374.34 mWh/g at 10 mA/cm2, respectively. The acceptable discharge performance of the anode was mainly due to the redeposition of metal Ag on the electrode surface, the multi-cracked discharge product film, and the non-basal-oriented grains with a high-volume fraction.

Key wordsMg-air battery    Mg-Ag alloy    microstructure    discharge performance    electrochemical behavior
收稿日期: 2023-08-10     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52375370);山西省自然科学基金项目(202103021224049);山西浙大新材料与化工研究院技术开发项目(2022SX-TD025);青海大学盐湖化工大型系列研究设施开放研究项目(2023-DXSSKF-Z02)
通讯作者: 程伟丽,chengweili7@126.com,主要从事先进镁基体材料开发及性能调控的研究
Corresponding author: CHENG Weili, professor, Tel: (0351)6010021, E-mail: chengweili7@126.com
作者简介: 郝旭邦,男,2000年生,硕士生
图1  挤压态Mg-1Ag合金(Q1合金)的晶粒取向图、晶粒类型图和(0001)极图
图2  Q1合金的晶粒尺寸分布图
图3  Q1合金的SEM像及EDS元素分布图
图4  Q1合金的XRD谱
PointMgAgO
A93.910.315.78
B88.920.3110.77
表1  Q1合金的EDS结果 (atomic fraction / %)
图5  Q1合金和HP Mg的开路电位、极化曲线阳极分支和阴极分支极化曲线及Nyquist图
SpecimenEOCP (vs SCE) / VEcorr (vs SCE) / Vicorr / (μA·cm-2)βc / mVβa / mV
Q1-1.609-1.534479.16215.3546.48
HP Mg-1.649-1.5997491.51366.56259.16
表2  Q1合金和HP Mg的电化学参数
图6  合金的等效电路图
Specimen

Rs

Ω·cm2

CPEdl / (F·cm-2)

Rct

Ω·cm²

Rf

Ω·cm²

L

Ω·cm²

CPEf / (F·cm-2)

RL

Ω·cm²

Tn1Tn2
Q12.4124.47 × 10-40.914.83829.60116.41.45 × 10-40.9729.6
HP Mg2.9082.32 × 10-50.903.52420.58247.78.65 × 10-51.0340.7
表3  根据电化学阻抗谱(EIS)数据拟合得出的电化学参数
图7  不同电流密度下Q1合金和HP Mg的放电曲线
图8  Q1合金和HP Mg的阳极效率和电池电压,比容量和比能量,以及近年镁空气电池阳极材料在10 mA/cm2下的放电性能统计[1~3,5~8,11,20~26]
图9  Q1合金在不同电流密度下放电10 h的表面和截面形貌SEM像
图10  Q1合金不同电流密度下放电产物的XPS
图11  Q1合金在不同电流密度和不同放电时间去产物表面形貌下的SEM像和放电10 h后去产物3D形貌
图12  Q1合金中基面取向和非基面取向晶粒的晶粒取向图,晶粒尺寸范围在0~14.19 μm内和大于14.19 μm晶粒取向图,基面取向晶粒且尺寸范围在0~14.19 μm内和大于14.19 μm晶粒取向图,及非基面取向晶粒且尺寸范围在0~14.19 μm内和大于14.19 μm晶粒取向图
1 Zou Q, Le Q C, Chen X R, et al. The influence of Ga alloying on Mg-Al-Zn alloys as anode material for Mg-air primary batteries [J]. Electrochim. Acta, 2022, 401: 139372
2 Ma B J, Tan C, Ouyang L Z, et al. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries [J]. J. Alloys Compd., 2022, 918: 165803
3 Bao J X, Sha J C, Li L H, et al. Electrochemical properties and discharge performance of Mg-3Sn-xCa alloy as a novel anode for Mg-air battery [J]. J. Alloys Compd., 2023, 934: 167849
4 Tong F L, Chen X Z, Teoh T E, et al. Mg-Sn alloys as anodes for magnesium-air batteries [J]. J. Electrochem. Soc., 2021, 168: 110531
5 Chen X R, Liao Q Y, Le Q C, et al. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery [J]. Electrochim. Acta, 2020, 348: 136315
6 Chen X R, Zou Q, Le Q C, et al. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery [J]. J. Power Sources, 2020, 451: 227807
7 Chen X R, Zou Q, Shi Z M, et al. The discharge performance of an as-extruded Mg-Zn-La-Ce anode for the primary Mg-air battery [J]. Electrochim. Acta, 2022, 404: 139763
8 Gong C W, Yan X, He X Z, et al. Influence of homogenization treatment on corrosion behavior and discharge performance of the Mg-2Zn-1Ca anodes for primary Mg-air batteries [J]. Mater. Chem. Phys., 2022, 280: 125802
9 Jiang P L, Li D P, Hou R Q, et al. A micro-alloyed Mg-Zn-Ge alloy as promising anode for primary Mg-air batteries [J]. J. Magnes. Alloy., doi: 10.1016/j.jma.2023.05.004
10 Jiang P L, Blawert C, Hou R Q, et al. Microstructural influence on corrosion behavior of MgZnGe alloy in NaCl solution [J]. J. Alloys Compd., 2019, 783: 179
11 Liu X, Xue J L, Zhang P J, et al. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries [J]. J. Power Sources, 2019, 414: 174
12 Chen X R, Venezuela J, Shi Z M, et al. Tailoring the discharge performance of extruded Mg-Sm-Al anode for Mg-air battery applications via control of Al content [J]. Mater. Today Energy, 2023, 36: 101363
13 Deng M, Höche D, Lamaka S V, et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries [J]. J. Power Sources, 2018, 396: 109
14 Xiao L R, Chen X F, Wei K, et al. Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy [J]. Scr. Mater., 2021, 191: 219
15 Zerankeshi M M, Alizadeh R. Ag-incorporated biodegradable Mg alloys [J]. Materialia, 2022, 23: 101445
16 Shangguan F E, Cheng W L, Chen Y H, et al. Elucidating the dependence of electrochemical behavior and discharge performance on the grain structure of lean Mg-0.3Bi-0.3Ag-0.3In anodes in primary Mg-air battery [J]. J. Power Sources, 2023, 564: 232856
17 Zhang Z M, Yu K, Ren W W, et al. Microstructure of directly extruded Mg-1Zn-1Ca alloy and its corrosion behavior in SBF solution [J]. Acta Metall. Sin., 2015, 51: 985
doi: 10.11900/0412.1961.2014.00652
17 张忠明, 余 凯, 任伟伟 等. 正挤压态Mg-1Zn-1Ca合金的显微组织及其在SBF溶液中的腐蚀行为 [J]. 金属学报, 2015, 51: 985
18 Wang N G, Huang Y X, Liu J J, et al. AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery [J]. Electrochim. Acta, 2021, 378: 138135
19 Wang L Q, Snihirova D, Deng M, et al. Insight into physical interpretation of high frequency time constant in electrochemical impedance spectra of Mg [J]. Corros. Sci., 2021, 187: 109501
20 Tong F L, Chen X Z, Wei S H, et al. Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery [J]. J. Magnes. Alloy., 2021, 9: 1967
21 Gong C W, He X Z, Fang D Q, et al. Effect of second phases on discharge properties and corrosion behaviors of the Mg-Ca-Zn anodes for primary Mg-air batteries [J]. J. Alloys Compd., 2021, 861: 158493
22 Li S B, Li H, Zhao C C, et al. Effects of Ca addition on microstructure, electrochemical behavior and magnesium-air battery performance of Mg-2Zn-xCa alloys [J]. J. Electroanal. Chem., 2022, 904: 115944
23 Zhang Y W X, Fan L L, Guo Y Y, et al. Discharge performance of Mg-Y binary alloys as anodes for Mg-air batteries [J]. Electrochim. Acta, 2023, 460: 142594
24 Ma Y B, Li N, Li D Y, et al. Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery [J]. J. Power Sources, 2011, 196: 2346
25 Tong F L, Chen X Z, Wang Q, et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesium-air batteries [J]. J. Alloys Compd., 2021, 857: 157579
26 Liu X, Xue J L. The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries [J]. Energy, 2019, 189: 116314
27 Cheng W L, Gu X J, Cheng S M, et al. Discharge performance and electrochemical behaviors of the extruded Mg-2Bi-0.5Ca-0.5In alloy as anode for Mg-air battery [J]. Acta Metall. Sin., 2021, 57: 623
27 程伟丽, 谷雄杰, 成世明 等. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为 [J]. 金属学报, 2021, 57: 623
doi: 10.11900/0412.1961.2020.00272
28 Yang L, Shi Y Q, Shen L J, et al. Effect of Ag on cathodic activation and corrosion behaviour of Mg-Mn-Ag alloys [J]. Corros. Sci., 2021, 185: 109408
29 Liu X, Liu S Z, Xue J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries [J]. J. Power Sources, 2018, 396: 667
30 Gu X J, Cheng W L, Cheng S M, et al. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60: 77
[1] 刘子儒, 郭乾应, 张虹雨, 刘永长. V添加对Ti2AlNb合金组织演变及硬度的影响[J]. 金属学报, 2025, 61(6): 848-856.
[2] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[3] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[4] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[5] 郭星星, 帅美荣, 楚志兵, 李玉贵, 谢广明. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J]. 金属学报, 2025, 61(2): 336-348.
[6] 王旗涛, 李艳芬, 张家榕, 李尧志, 付海阳, 李新乐, 严伟, 单以银. 聚变增殖包层用低活化9Cr-ODS钢的室温低周疲劳行为[J]. 金属学报, 2025, 61(2): 323-335.
[7] 戴进财, 闵小华, 辛社伟, 刘凤金. 间隙元素OβTi-15Mo合金超低温力学性能的影响[J]. 金属学报, 2025, 61(2): 243-252.
[8] 王叶青, 付珂, 赵永柱, 苏礼季, 陈正. Fe7(CoNiMn)80B13 共晶高熵合金的深过冷非平衡凝固行为及微观组织演变[J]. 金属学报, 2025, 61(1): 143-153.
[9] 张胜煜, 马庆爽, 余黎明, 张竟文, 李会军, 高秋志. 预时效处理对冷轧含Al奥氏体耐热钢组织和性能的影响[J]. 金属学报, 2025, 61(1): 177-190.
[10] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[11] 万杰, 李皓天, 刘书基, 路洪洲, 王立生, 张振栋, 刘春海, 贾建磊, 刘海峰, 陈豫增. Al-Nb-B细化剂形核质点的弥散化及其对铸造铝合金组织及力学性能的影响[J]. 金属学报, 2025, 61(1): 117-128.
[12] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[13] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[14] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[15] 熊毅, 栾泽伟, 马云飞, 厉勇, 查小琴. 超音速微粒轰击诱导表面纳米化对300M钢腐蚀疲劳行为的影响[J]. 金属学报, 2024, 60(5): 627-638.