Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1567-1578    DOI: 10.11900/0412.1961.2023.00499
  研究论文 本期目录 | 过刊浏览 |
纳米压痕下VCoNi 中熵合金的塑性变形行为
王方圆1, 张玉龙2, 王章维1(), 熊志平3, 王辉4, 宋旼1, 夏文真2()
1 中南大学 粉末冶金国家重点实验室 长沙 410083
2 安徽工业大学 冶金工程学院 微纳组织与力学研究所 马鞍山 243032
3 北京理工大学 冲击环境材料技术国家级重点实验室 北京 100081
4 北京科技大学 新金属材料国家重点实验室 北京 100083
Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation
WANG Fangyuan1, ZHANG Yulong2, WANG Zhangwei1(), XIONG Zhiping3, WANG Hui4, SONG Min1, XIA Wenzhen2()
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 Institute of Microstructure and Micro/nano-mechanics, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China
3 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
4 State Key Laboratory for Advance Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

王方圆, 张玉龙, 王章维, 熊志平, 王辉, 宋旼, 夏文真. 纳米压痕下VCoNi 中熵合金的塑性变形行为[J]. 金属学报, 2025, 61(10): 1567-1578.
Fangyuan WANG, Yulong ZHANG, Zhangwei WANG, Zhiping XIONG, Hui WANG, Min SONG, Wenzhen XIA. Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation[J]. Acta Metall Sin, 2025, 61(10): 1567-1578.

全文: PDF(3596 KB)   HTML
摘要: 

fcc等原子比VCoNi中熵合金因优异的力学性能受到广泛关注,而探究其塑性变形机制对于力学性能调控至关重要。为了探究晶粒取向对位错运动过程和位错间相互作用的影响机理,本工作利用纳米压痕实验探讨了VCoNi中熵合金{101}、{111}和{001}晶粒的塑性变形行为。通过滑移台阶演变和载荷-位移曲线的分析,重点研究了晶体取向对其塑性变形行为的影响,以及位错间相互作用、载荷-位移变化行为与位错运动之间的关系。结果表明,VCoNi中熵合金中晶粒取向决定纳米压痕诱导滑移系的激活与开动顺序,以及位错反应过程,进而显著影响压痕压坑和其周边滑移台阶的形貌,以及载荷-位移变化行为。位错相互作用的分析结果表明,位错反应易在{101}晶粒中形成Lomer-Cottrell位错锁和Glissile结,在{111}晶粒中易形成Collinear结和Lomer-Cottrell位错锁,而在{001}晶粒中易形成Glissile结,这决定不同晶粒压痕载荷-位移曲线中的后续位移突变行为。

关键词 中熵合金纳米压痕滑移台阶塑性变形位错反应    
Abstract

High- and medium-entropy alloys have attracted considerable attention because of their innovative design concepts. The VCoNi medium-entropy alloy with equiatomic ratio, a distinctive type of medium-entropy alloy, is characterized by a fcc structure. As it exhibits remarkable mechanical properties such as strength and plasticity across a broad temperature spectrum, it is suitable for versatile applications. Current research on VCoNi medium-entropy alloys predominantly focuses on the alloy design and the manipulation of heat treatment technologies to enhance mechanical properties with relatively less emphasis on elucidating plastic deformation mechanisms. A profound understanding of these mechanisms is imperative for controlling their properties. Although previous studies have revealed plastic deformation mechanisms mediated by dislocations in VCoNi medium-entropy alloys, the impact of grain orientation on dislocation movement and interaction mechanisms remains elusive. Nanoindentation technology has been widely used to assess plastic deformation behavior and dislocation evolution in materials. Grain orientation profoundly influences the mechanical properties and plastic deformation behavior of materials at the microscale. Therefore, investigating the influence of grain orientation on the plastic deformation mechanism in the VCoNi medium-entropy alloy is of great importance. A comprehensive understanding of plastic deformation and dislocation interactions can be achieved by analyzing slip steps generated by nanoindentation. This study delves into the plastic deformation behavior of VCoNi medium-entropy alloy in {101}, {111}, and {001} grains using nanoindentation. By analyzing the evolution of slip steps and load-displacement curves, it concentrates on the influence of crystal orientation on plastic deformation behavior and explores the intricate relationship among dislocation interactions, load-displacement behavior, and dislocation motion. The grain orientation in the VCoNi medium-entropy alloy dictates the activation and sequence of slip systems induced by nanoindentation, thereby substantially influencing the morphology of indentations, surrounding slip steps, and load-displacement behavior. The slip steps on the same slip plane in each grain preferentially appear on a positively inclined slip plane. On {101} grains, the slip steps appear on the (111) and (111¯) slip planes initially, and then on the (11¯1¯) and (11¯1) slip planes. In {111} grains, the slip steps appear on the (111¯), (11¯1¯), and (11¯1) slip planes. On {001} grains, the slip steps appear on the four {111} slip planes. {101}, {111}, and {001} grains exhibit butterfly-shaped, nested triangle-shaped, and cross-shaped overall indentation morphologies, respectively. Additionally, only a limited occurrence of double cross-slip is observed at the edges of the slip steps in {101} and {001} grains. The analysis of dislocation interactions revealed that on {101} grains, dislocation reactions tended to form Lomer-Cottrell locks and Glissile junctions, in {111} grains they tended to form Collinear junctions and Lomer-Cottrell locks, and in {001} grains they tended to form Glissile junctions. This determination influences the subsequent pop-in behavior in the load-displacement curves of different grains.

Key wordsmedium-entropy alloy    nanoindentation    slip step    plasticity    dislocation interaction
收稿日期: 2023-12-29     
ZTFLH:  TG111  
基金资助:国家重点研发计划项目(2022YFE0134400);国家自然科学基金青年科学基金项目(52201057);冲击环境材料技术重点实验室基金项目(6142902220101);新金属材料国家重点实验室开放基金项目(2023-Z05)
通讯作者: 王章维,z.wang@csu.edu.cn,主要从事高熵合金研究;
夏文真,w.xia@ahut.edu.cn,主要从事微纳力学研究
作者简介: 王方圆,女,1999年生,硕士
张玉龙,男,1998年生,硕士,共同第一作者
图1  80 mN压痕载荷下不同取向晶粒的二次电子(SE像)、反极图、相应滑移面示意图及电子通道衬度成像(ECCI)和示意图
图2  80 mN压痕载荷下滑移台阶局部放大SE像
图3  不同压痕载荷下各晶粒的SE像
图4  不同压痕载荷下各晶粒的载荷-深度(P-h)曲线和塑性功分布
Slipb(11¯1¯)(111)(111¯)(11¯1)
plane1/2[110]1/2[011¯]1/2[101]1/2[1¯01]1/2[1¯10]1/2[011¯]1/2[011]1/2[1¯10]1/2[101]1/2[1¯01]1/2[011]1/2[110]
(11¯1¯)1/2[110]-CoplCoplLomHirthGlissLomHirthGlissGlissGlissColl
1/2[011¯]Copl-CoplGlissGlissCollHirthLomGlissLomHirthGliss
1/2[101]CoplCopl-HirthLomGlissGlissGlissCollHirthLomGliss
(111)1/2[1¯01]LomGlissHirth-CoplCoplLomGlissHirthCollGlissGliss
1/2[1¯10]HirthGlissLomCopl-CoplGlissCollGlissGlissLomHirth
1/2[011¯]GlissCollGlissCoplCopl-HirthGlissLomGlissHirthLom
(111¯)1/2[011]LomHirthGlissLomGlissHirth-CoplCoplGlissCollGliss
1/2[1¯10]HirthLomGlissGlissCollGlissCopl-CoplLomGlissHirth
1/2[101]GlissGlissCollHirthGlissLomCoplCopl-HirthGlissLom
(11¯1)1/2[1¯01]GlissLomHirthCollGlissGlissGlissLomHirth-CoplCopl
1/2[011]GlissHirthLomGlissLomHirthCollGlissGlissCopl-Copl
1/2[110]CollGlissGlissGlissHirthLomGlissHirthLomCoplCopl-
表1  fcc金属中全位错反应类型
图5  5 mN压痕载荷下各晶粒滑移台阶的局部放大SE像和相应滑移面示意图
[1] George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
[2] Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
[3] Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
[4] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
[5] Liu J P, Chen H, Zhang C, et al. Progress of cryogenic deformation and strengthening-toughening mechanisms of high-entropy alloys [J]. Acta Metall. Sin., 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
[5] 刘俊鹏, 陈 浩, 张 弛 等. 高熵合金的低温塑性变形机制及强韧化研究进展 [J]. 金属学报, 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
[6] An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[6] 安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[7] Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
[8] Chen X F, Yuan F P, Zhou H, et al. Structure motif of chemical short-range order in a medium-entropy alloy [J]. Mater. Res. Lett., 2022, 10: 149
[9] Cai W J, He J Y, Wang L, et al. Characterization of chemical short-range order in VCoNi medium-entropy alloy processed by spark plasma sintering [J]. Scr. Mater., 2023, 231: 115463
[10] Liu G D, Luo X M, Zou J P, et al. Effects of grain size and cryogenic temperature on the strain hardening behavior of VCoNi medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 973
[11] Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
[12] Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8 pmid: 32555177
[13] Lee S, Vaid A, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y pmid: 32398690
[14] Habiyaremye F, Guitton A, Schäfer F, et al. Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions [J]. Mater. Sci. Eng., 2021, A817: 141364
[15] Ye Y X, Lu Z P, Nieh T G. Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy [J]. Scr. Mater., 2017, 130: 64
[16] Hua D P, Xia Q S, Wang W, et al. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation [J]. Int. J. Plast., 2021, 142: 102997
[17] Zhang Y W, Li S J, Hao Y L, et al. Nanoindentation study on Ti-24Nb-4Zr-8Sn single crystals [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1) : S528
[17] 张晏玮, 李述军, 郝玉琳 等. Ti-24Nb-4Zr-8Sn合金单晶纳米压痕研究 [J]. 中国有色金属学报, 2010(专辑)825S :02,1
[18] Salehinia I, Lawrence S K, Bahr D F. The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation [J]. Acta Mater., 2013, 61: 1421
[19] Chen T Y, Tan L Z, Lu Z Z, et al. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni [J]. Acta Mater., 2017, 138: 83
[20] Csanádi T, Bl'anda M, Chinh N Q, et al. Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals [J]. Acta Mater., 2015, 83: 397
[21] Kang S, Jung Y S, Yoo B G, et al. Orientation-dependent indentation modulus and yielding in a high Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2012, A532: 500
[22] Sarvesha R, Gokhale A, Kumar K, et al. Effect of crystal orientation on indentation-induced deformation behavior of zinc [J]. Mater. Sci. Eng., 2020, A776: 139064
[23] McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
[24] Tromas C, Girard J C, Audurier V, et al. Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy [J]. J. Mater. Sci., 1999, 34: 5337
[25] Nibur K A, Bahr D F. Identifying slip systems around indentations in fcc metals [J]. Scr. Mater., 2003, 49: 1055
[26] Nibur K A, Akasheh F, Bahr D F. Analysis of dislocation mechanisms around indentations through slip step observations [J]. J. Mater. Sci., 2007, 42: 889
[27] Xia W Z, Dehm G, Brinckmann S. Insight into indentation-induced plastic flow in austenitic stainless steel [J]. J. Mater. Sci., 2020, 55: 9095
[28] Xia W Z, Dehm G, Brinckmann S. Unraveling indentation-induced slip steps in austenitic stainless steel [J]. Mater. Des., 2019, 183: 108169
[29] Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985: 165
[30] Tuck J R, Korsunsky A M, Bull S J, et al. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems [J]. Surf. Coat. Technol., 2001, 137: 217
[31] Nguyen P C, Ryu I. Mesoscale dislocation dynamics modeling of incipient plasticity under nanoindentation [J]. Materialia, 2023, 32: 101956
[32] Pöhl F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation [J]. Sci. Rep., 2019, 9: 15350
doi: 10.1038/s41598-019-51644-5 pmid: 31653908
[33] Catoor D, Gao Y F, Geng J, et al. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation [J]. Acta Mater., 2013, 61: 2953
[34] Montagne A, Audurier V, Tromas C. Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO [J]. Acta Mater., 2013, 61: 4778
[35] Xiong K, Gu J F. Understanding pop-in phenomena in FeNi3 nanoindentation [J]. Intermetallics, 2015, 67: 111
[36] Li J Y, Yang S Q, Dong L G, et al. Effect of crystal orientation on the nanoindentation deformation behavior of TiN coating based on molecular dynamics [J]. Surf. Coat. Technol., 2023, 467: 129721
[37] Stricker M, Weygand D. Dislocation multiplication mechanisms-glissile junctions and their role on the plastic deformation at the microscale [J]. Acta Mater., 2015, 99: 130
[38] Katzer B, Zoller K, Bermuth J, et al. Characterization of Lomer junctions based on the Lomer arm length distribution in dislocation networks [J]. Scr. Mater., 2023, 226: 115232
[39] Kumar Panda A, Divakar R, Singh A, et al. Molecular dynamics studies on formation of stacking fault tetrahedra in fcc metals [J]. Comput. Mater. Sci., 2021, 186: 110017
[40] An D Y, Zhao H, Sun B H, et al. Direct observations of collinear dislocation interaction in a Fe-17.4Mn-1.50Al-0.29C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction [J]. Scr. Mater., 2020, 186: 341
[1] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[2] 罗来马, 魏国庆, 刘祯, 朱晓勇, 吴玉程. 钨材料中缺陷的形成及演化规律[J]. 金属学报, 2025, 61(4): 526-540.
[3] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[4] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[5] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[6] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[7] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[8] 南勇, 关旭, 闫海乐, 唐帅, 贾楠, 赵骧, 左良. B微合金化对CoNiV中熵合金微观组织和力学性能的影响及其机理[J]. 金属学报, 2024, 60(12): 1647-1655.
[9] 刘畅, 吴戈, 吕坚. 纳米结构多主元合金的力学行为及强塑化机制[J]. 金属学报, 2024, 60(1): 16-29.
[10] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[11] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[12] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[13] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[14] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[15] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.