|
|
|
| 纳米压痕下VCoNi 中熵合金的塑性变形行为 |
王方圆1, 张玉龙2, 王章维1( ), 熊志平3, 王辉4, 宋旼1, 夏文真2( ) |
1 中南大学 粉末冶金国家重点实验室 长沙 410083 2 安徽工业大学 冶金工程学院 微纳组织与力学研究所 马鞍山 243032 3 北京理工大学 冲击环境材料技术国家级重点实验室 北京 100081 4 北京科技大学 新金属材料国家重点实验室 北京 100083 |
|
| Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation |
WANG Fangyuan1, ZHANG Yulong2, WANG Zhangwei1( ), XIONG Zhiping3, WANG Hui4, SONG Min1, XIA Wenzhen2( ) |
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 2 Institute of Microstructure and Micro/nano-mechanics, School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243032, China 3 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China 4 State Key Laboratory for Advance Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
王方圆, 张玉龙, 王章维, 熊志平, 王辉, 宋旼, 夏文真. 纳米压痕下VCoNi 中熵合金的塑性变形行为[J]. 金属学报, 2025, 61(10): 1567-1578.
Fangyuan WANG,
Yulong ZHANG,
Zhangwei WANG,
Zhiping XIONG,
Hui WANG,
Min SONG,
Wenzhen XIA.
Plastic Deformation Behaviors of VCoNi Medium-Entropy Alloy Under Nanoindentation[J]. Acta Metall Sin, 2025, 61(10): 1567-1578.
| [1] |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
| [2] |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1
pmid: 31819051
|
| [3] |
Wang Z W, Lu W J, Zhao H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation [J]. Sci. Adv., 2020, 6: eaba9543
|
| [4] |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
| [5] |
Liu J P, Chen H, Zhang C, et al. Progress of cryogenic deformation and strengthening-toughening mechanisms of high-entropy alloys [J]. Acta Metall. Sin., 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
|
| [5] |
刘俊鹏, 陈 浩, 张 弛 等. 高熵合金的低温塑性变形机制及强韧化研究进展 [J]. 金属学报, 2023, 59: 727
doi: 10.11900/0412.1961.2022.00598
|
| [6] |
An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
| [6] |
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
|
| [7] |
Sohn S S, Da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
|
| [8] |
Chen X F, Yuan F P, Zhou H, et al. Structure motif of chemical short-range order in a medium-entropy alloy [J]. Mater. Res. Lett., 2022, 10: 149
|
| [9] |
Cai W J, He J Y, Wang L, et al. Characterization of chemical short-range order in VCoNi medium-entropy alloy processed by spark plasma sintering [J]. Scr. Mater., 2023, 231: 115463
|
| [10] |
Liu G D, Luo X M, Zou J P, et al. Effects of grain size and cryogenic temperature on the strain hardening behavior of VCoNi medium-entropy alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 973
|
| [11] |
Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
|
| [12] |
Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8
pmid: 32555177
|
| [13] |
Lee S, Vaid A, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y
pmid: 32398690
|
| [14] |
Habiyaremye F, Guitton A, Schäfer F, et al. Plasticity induced by nanoindentation in a CrCoNi medium-entropy alloy studied by accurate electron channeling contrast imaging revealing dislocation-low angle grain boundary interactions [J]. Mater. Sci. Eng., 2021, A817: 141364
|
| [15] |
Ye Y X, Lu Z P, Nieh T G. Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy [J]. Scr. Mater., 2017, 130: 64
|
| [16] |
Hua D P, Xia Q S, Wang W, et al. Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation [J]. Int. J. Plast., 2021, 142: 102997
|
| [17] |
Zhang Y W, Li S J, Hao Y L, et al. Nanoindentation study on Ti-24Nb-4Zr-8Sn single crystals [J]. Chin. J. Nonferrous Met., 2010, 20(Spec.1) : S528
|
| [17] |
张晏玮, 李述军, 郝玉琳 等. Ti-24Nb-4Zr-8Sn合金单晶纳米压痕研究 [J]. 中国有色金属学报, 2010(专辑)825S :02,1
|
| [18] |
Salehinia I, Lawrence S K, Bahr D F. The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation [J]. Acta Mater., 2013, 61: 1421
|
| [19] |
Chen T Y, Tan L Z, Lu Z Z, et al. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni [J]. Acta Mater., 2017, 138: 83
|
| [20] |
Csanádi T, Bl'anda M, Chinh N Q, et al. Orientation-dependent hardness and nanoindentation-induced deformation mechanisms of WC crystals [J]. Acta Mater., 2015, 83: 397
|
| [21] |
Kang S, Jung Y S, Yoo B G, et al. Orientation-dependent indentation modulus and yielding in a high Mn twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2012, A532: 500
|
| [22] |
Sarvesha R, Gokhale A, Kumar K, et al. Effect of crystal orientation on indentation-induced deformation behavior of zinc [J]. Mater. Sci. Eng., 2020, A776: 139064
|
| [23] |
McInteer W A, Thompson A W, Bernstein I M. The effect of hydrogen on the slip character of nickel [J]. Acta Metall., 1980, 28: 887
|
| [24] |
Tromas C, Girard J C, Audurier V, et al. Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy [J]. J. Mater. Sci., 1999, 34: 5337
|
| [25] |
Nibur K A, Bahr D F. Identifying slip systems around indentations in fcc metals [J]. Scr. Mater., 2003, 49: 1055
|
| [26] |
Nibur K A, Akasheh F, Bahr D F. Analysis of dislocation mechanisms around indentations through slip step observations [J]. J. Mater. Sci., 2007, 42: 889
|
| [27] |
Xia W Z, Dehm G, Brinckmann S. Insight into indentation-induced plastic flow in austenitic stainless steel [J]. J. Mater. Sci., 2020, 55: 9095
|
| [28] |
Xia W Z, Dehm G, Brinckmann S. Unraveling indentation-induced slip steps in austenitic stainless steel [J]. Mater. Des., 2019, 183: 108169
|
| [29] |
Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985: 165
|
| [30] |
Tuck J R, Korsunsky A M, Bull S J, et al. On the application of the work-of-indentation approach to depth-sensing indentation experiments in coated systems [J]. Surf. Coat. Technol., 2001, 137: 217
|
| [31] |
Nguyen P C, Ryu I. Mesoscale dislocation dynamics modeling of incipient plasticity under nanoindentation [J]. Materialia, 2023, 32: 101956
|
| [32] |
Pöhl F. Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation [J]. Sci. Rep., 2019, 9: 15350
doi: 10.1038/s41598-019-51644-5
pmid: 31653908
|
| [33] |
Catoor D, Gao Y F, Geng J, et al. Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation [J]. Acta Mater., 2013, 61: 2953
|
| [34] |
Montagne A, Audurier V, Tromas C. Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO [J]. Acta Mater., 2013, 61: 4778
|
| [35] |
Xiong K, Gu J F. Understanding pop-in phenomena in FeNi3 nanoindentation [J]. Intermetallics, 2015, 67: 111
|
| [36] |
Li J Y, Yang S Q, Dong L G, et al. Effect of crystal orientation on the nanoindentation deformation behavior of TiN coating based on molecular dynamics [J]. Surf. Coat. Technol., 2023, 467: 129721
|
| [37] |
Stricker M, Weygand D. Dislocation multiplication mechanisms-glissile junctions and their role on the plastic deformation at the microscale [J]. Acta Mater., 2015, 99: 130
|
| [38] |
Katzer B, Zoller K, Bermuth J, et al. Characterization of Lomer junctions based on the Lomer arm length distribution in dislocation networks [J]. Scr. Mater., 2023, 226: 115232
|
| [39] |
Kumar Panda A, Divakar R, Singh A, et al. Molecular dynamics studies on formation of stacking fault tetrahedra in fcc metals [J]. Comput. Mater. Sci., 2021, 186: 110017
|
| [40] |
An D Y, Zhao H, Sun B H, et al. Direct observations of collinear dislocation interaction in a Fe-17.4Mn-1.50Al-0.29C (wt.%) austenitic steel under cyclic loading by in-situ electron channelling contrast imaging and cross-correlation electron backscatter diffraction [J]. Scr. Mater., 2020, 186: 341
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|