Please wait a minute...
金属学报  2025, Vol. 61 Issue (10): 1542-1554    DOI: 10.11900/0412.1961.2025.00048
  研究论文 本期目录 | 过刊浏览 |
热处理对电弧定向能量沉积Al-Zn-Mg-Cu-Sc合金显微组织与力学性能的影响
秦凤明, 李亚菲, 李亚杰(), 赵晓东, 梁上上, 陈金秋
太原科技大学 材料科学与工程学院 太原 030024
Effect of Heat Treatment on the Microstructural Characteristics and Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloy Prepared via Wire-Arc Directed Energy Deposition Process
QIN Fengming, LI Yafei, LI Yajie(), ZHAO Xiaodong, LIANG Shangshang, CHEN Jinqiu
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

秦凤明, 李亚菲, 李亚杰, 赵晓东, 梁上上, 陈金秋. 热处理对电弧定向能量沉积Al-Zn-Mg-Cu-Sc合金显微组织与力学性能的影响[J]. 金属学报, 2025, 61(10): 1542-1554.
Fengming QIN, Yafei LI, Yajie LI, Xiaodong ZHAO, Shangshang LIANG, Jinqiu CHEN. Effect of Heat Treatment on the Microstructural Characteristics and Mechanical Properties of Al-Zn-Mg-Cu-Sc Alloy Prepared via Wire-Arc Directed Energy Deposition Process[J]. Acta Metall Sin, 2025, 61(10): 1542-1554.

全文: PDF(6651 KB)   HTML
摘要: 

研究热处理对电弧定向能量沉积Al-Zn-Mg-Cu-Sc合金显微组织与力学性能的影响,对于优化该合金增材制造工艺、提升其综合性能具有重要意义。本工作以自制7075-Sc焊丝为原材料,采用冷金属过渡(CMT)工艺制备了无裂纹的Al-Zn-Mg-Cu-Sc厚壁合金构件。结果表明,沉积态合金由细小的等轴晶组成,平均尺寸约14 μm,晶界有连续第二相分布。在470 ℃、4 h的固溶工艺下,第二相溶解70.2%,残余第二相主要为Al7Cu2Fe和Al2Mg3Zn3。在120 ℃进行人工时效后,力学性能测试结果表明最佳时效时间为18 h。经过470 ℃、4 h固溶和120 ℃、18 h时效处理后,合金的屈服强度、抗拉强度、伸长率分别为475.2 MPa、542.1 MPa和5.2%,与沉积态合金相比分别提高了52.8%、36.5%和36.8%。

关键词 Al-Zn-Mg-Cu-Sc合金电弧定向能量沉积热处理显微组织力学性能    
Abstract

Wire-arc directed energy deposition (DED) shows considerable potential for fabricating structural components from Al-Zn-Mg-Cu-Sc alloys. However, its layer-by-layer deposition nature leads to continuous grain boundary second-phase networks, grain coarsening, elemental microsegregation, and residual stress accumulation during solidification of 7075-Sc aluminum alloys, significantly compromising their mechanical properties and industrial viability. As a precipitation-strengthened alloy, 7075 can be optimized through heat treatment to control the morphology and distribution of secondary phases, thereby improving mechanical performance. Nevertheless, the inhomogeneous as-deposited microstructure proves difficult to fully homogenize using conventional heat treatment, necessitating precise temperature control and tailored aging schedules for effective thermal processing. In this study, crack-free, thick-walled Al-Zn-Mg-Cu-Sc alloy components were fabricated using custom 7075-Sc welding wire and the cold metal transfer process. Microstructural analysis revealed that the as-deposited alloy consists of fine equiaxed grains with an average diameter of approximately 14 μm and a continuous grain boundary second-phase distribution. Solution treatment at 470 oC results in a markedly reduced dissolution rate of the secondary phases over time, with a 4 h duration identified as optimal. Under this condition, 70.2% of the secondary phases are dissolved; the remaining phases are predominantly Al7Cu2Fe and Al2Mg3Zn3. Subsequent artificial aging at 120 oC showed that an aging time of 18 h yields optimal mechanical properties. Following the combined solution and aging treatments, the alloy exhibited a yield strength of 475.2 MPa, tensile strength of 542.1 MPa, and elongation of 5.2%. These values represent increases of 52.8%, 36.5%, and 36.8%, respectively, compared to the as-deposited alloy.

Key wordsAl-Zn-Mg-Cu-Sc alloy    wire-arc directed energy deposition (DED)    heat treatment    microstructure    mechanical property
收稿日期: 2025-02-24     
ZTFLH:  TG456.9  
基金资助:中央引导地方科技发展资金项目(YDZJSX20231A045);中央引导地方科技发展资金项目(YDZJSX2024D053);太原科技大学科研启动资金项目(20-232074);太原科技大学科研启动资金项目(20212011);太原科技大学科研启动资金项目(20222063);山西省自然科学基金项目(202303021212216)
通讯作者: 李亚杰,liyajie1207@126.com,主要从事金属增材制造方面的研究
作者简介: 秦凤明,女,1988年生,副教授,博士
图1  电弧定向能量沉积(DED)实验过程示意图、沉积样品的形貌与实验取样位置示意图
AlloyZnMgCuScCrFeSiTiAl
7075-Sc wire5.522.561.620.250.110.320.250.14Bal.
As-deposited5.112.381.480.230.120.280.220.14Bal.
表1  材料的化学成分 (mass fraction / %)
图2  沉积态Al-Zn-Mg-Cu-Sc合金及固溶处理后纵截面区域的OM和SEM像
图3  沉积态与时效态电弧DED合金的EBSD反极图、极图和晶粒尺寸统计图
图4  沉积态与时效态电弧DED合金的晶界图和取向差角统计结果
图5  沉积态和时效态电弧DED合金的SEM像及EDS分析
图6  沉积态和不同时效时间热处理后样品的微区XRD谱
图7  沉积态和不同时效时间热处理后样品的硬度
图8  沉积态和不同时效时间热处理样品的工程应力-应变曲线和拉伸性能
图9  沉积态和不同时效热处理时间下电弧DED Al-Zn-Mg-Cu-Sc样品的拉伸断口形貌
图10  沉积态和热处理样品的TEM像和对应的快速Fourier变换(FFT)
图11  沉积态和热处理后合金中强化机制的贡献
[1] Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
[2] Panigrahi S K, Jayaganthan R. Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling [J]. Mater. Des., 2011, 32: 3150
[3] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des. (1980-2015), 2014, 56: 862
[4] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
[5] Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
[6] Oko O E, Mbakaan C, Barki E. Experimental investigation of the effect of processing parameters on densification, microstructure and hardness of selective laser melted 7075 aluminium alloy [J]. Mater. Res. Express, 2020, 7: 036512
[7] Bartsch H, Kühne R, Citarelli S, et al. Fatigue analysis of wire arc additive manufactured (3D printed) components with unmilled surface [J]. Structures, 2021, 31: 576
[8] Wu B T, Pan Z X, Ding D H, et al. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement [J]. J. Manuf. Processes, 2018, 35: 127
[9] Zhao Y N, Guo Q Y, Liu C X, et al. Effects of subsequent heat treatment on microstructure and high-temperature mechanical properties of laser 3D printed GH4099 alloy [J]. Acta Metall. Sin., 2025, 61: 165
[9] 赵亚楠, 郭乾应, 刘晨曦 等. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响 [J] 金属学报, 2025, 61: 165
doi: 10.11900/0412.1961.2024.00208
[10] Xia X C, Zhang E K, Ding J, et al. Research progress on laser cladding of refractory high-entropy alloy coatings [J]. Acta Metall. Sin., 2025, 61: 59
doi: 10.11900/0412.1961.2024.00146
[10] 夏兴川, 张恩宽, 丁 俭 等. 激光熔覆难熔高熵合金涂层研究进展 [J] 金属学报, 2025, 61: 59
doi: 10.11900/0412.1961.2024.00146
[11] Yu Z L, Yuan T, Xu M, et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire + arc additive manufacturing [J]. J. Manuf. Processes, 2021, 62: 430
[12] Wang L W, Wu T, Wang D L, et al. A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al-Zn-Mg-Cu alloy: Process, microstructure and mechanical properties [J]. Addit. Manuf., 2023, 72: 103639
[13] Cai X Y, Xia Y H, Dong B L, et al. Effects of deposition paramaters on the microstructure evolution of wire arc additive manufactured Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2023, 26: 1572
[14] Ren L L, Gu H M, Wang W, et al. Effect of Sc content on the microstructure and properties of Al-Mg-Sc alloys deposited by wire arc additive manufacturing [J]. Met. Mater. Int., 2021, 27: 68
[15] Xia Y H, Cai X Y, Dong B L, et al. Wire arc additive manufacturing of Al-Mg-Sc alloy: An analysis of the effect of Sc on microstructure and mechanical properties [J]. Mater. Charact., 2023, 203: 113116
[16] Dong B L, Xia Y H, Cai X Y, et al. Addition of Sc in wire-based directed energy deposition of Al-Mg-Zn-Cu alloy: Microalloying to refine grains and improve mechanical properties [J]. Addit. Manuf., 2023, 67: 103494
[17] Klein T, Schnall M, Gomes B, et al. Wire-arc additive manufacturing of a novel high-performance Al-Zn-Mg-Cu alloy: Processing, characterization and feasibility demonstration [J]. Addit. Manuf., 2021, 37: 101663
[18] Miao J L, Chen J Q, Ting X, et al. Effect of solution treatment on porosity, tensile properties and fatigue resistance of Al-Cu alloy fabricated by wire arc additive manufacturing [J]. J. Mater. Res. Technol., 2024, 28: 1864
[19] Hao S, Guo X P, Cui J Y, et al. Study on the solid solution temperature of achieving ultra-high strength in wire-arc additive manufactured Al-Zn-Mg-Cu aluminum alloy [J]. Mater. Charact., 2023, 201: 112975
[20] Fu R, Lu W J, Guo Y L, et al. Achieving high strength-ductility of Al-Zn-Mg-Cu alloys via hot-wire arc additive manufacturing enabled by strengthening precipitates [J]. Addit. Manuf., 2022, 58: 103042
[21] Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
[22] Dai Y X, Yan L M, Hao J P. Microstructure and intermetallic phase evolution during the homogenization of an Al-Zn-Mg-Cu-Zr-Nd aluminum alloy [J]. Adv. Eng. Mater., 2023, 25: 2201288
[23] Cheng S X, Liu F C, Xu Y, et al. Effects of arc oscillation on microstructure and mechanical properties of AZ31 magnesium alloy prepared by CMT wire-arc directed energy deposition [J]. Mater. Sci. Eng., 2023, A864: 144539
[24] Bi J, Lei Z L, Chen Y B, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Mater. Sci. Eng., 2019, A768: 138478
[25] Yu J, Kim J Y. Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints [J]. Acta Mater., 2008, 56: 5514
[26] Toda H, Hidaka T, Kobayashi M, et al. Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure [J]. Acta Mater., 2009, 57: 2277
[27] Lin B, Wang K, Liu F, et al. An intrinsic correlation between driving force and energy barrier upon grain boundary migration [J]. J. Mater. Sci. Technol., 2018, 34: 1359
doi: 10.1016/j.jmst.2017.11.002
[28] Feng J, Ye B, Zuo L J, et al. Effects of Zr, Ti and Sc additions on the microstructure and mechanical properties of Al-0.4Cu-0.14Si-0.05Mg-0.2Fe alloys [J]. J. Mater. Sci. Technol., 2018, 34: 2316
doi: 10.1016/j.jmst.2018.05.011
[29] Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys [J]. Acta Mater., 2001, 49: 1909
[30] Chung T F, Yang Y L, Huang B M, et al. Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy [J]. Acta Mater., 2018, 149: 377
[31] Dong B L, Cai X Y, Xia Y H, et al. Step solution treatment of a wire-arc directed energy deposited Al-Zn-Mg-Cu alloy: Defects suppression and mechanical property improvement [J]. Virtual Phys. Prototyp., 2024, 19: e2382170
[32] Yang W H, Zhang Y L, Yang H F, et al. Effect of non-isothermal retrogression and re-aging treatment on microstructure evolution and mechanical properties of Al-Zn-Mg-Cu alloy [J]. J. Mater. Res. Technol., 2024, 31: 1728
[33] Liu Y, Jiang D M, Li W J. The effect of multistage ageing on microstructure and mechanical properties of 7050 alloy [J]. J. Alloys Compd., 2016, 671: 408
[34] Wang Z, Wang S G, Zhang C C, et al. Effect of post-weld heat treatment on microstructure and mechanical properties of 7055 aluminum alloy electron beam welded joint [J]. Mater. Res. Express, 2020, 7: 066528
[35] Scheiber D, Jechtl T, Svoboda J, et al. On solute depletion zones along grain boundaries during segregation [J]. Acta Mater., 2020, 182: 100
doi: 10.1016/j.actamat.2019.10.040
[36] Ogura T, Hirosawa S, Cerezo A, et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg(-Ag) alloys [J]. Acta Mater., 2010, 58: 5714
[37] Zhao H, De Geuser F, Kwiatkowski da Silva A, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
[38] Krug M E, Mao Z G, Seidman D N, et al. Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al-Li-Sc alloys [J]. Acta Mater., 2014, 79: 382
[39] Li Y J, Ma C R, Qin F M, et al. The microstructure and mechanical properties of 316L austenitic stainless steel prepared by forge and laser melting deposition [J]. Mater. Sci. Eng., 2023, A870: 144820
[40] Liu D H, Wu D J, Ma G Y, et al. Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al-Cu alloy [J]. Virtual Phys. Prototyp., 2020, 15: 445
[41] Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
[42] Booth-Morrison C, Dunand D C, Seidman D N. Coarsening resistance at 400 oC of precipitation-strengthened Al-Zr-Sc-Er alloys [J]. Acta Mater., 2011, 59: 7029
[1] 张天宇, 张鹏, 肖娜, 王小海, 刘国强, 杨志刚, 张弛. 奥氏体化温度对2 GPa超高强钢显微组织和力学性能的影响[J]. 金属学报, 2025, 61(9): 1353-1363.
[2] 王洪瑛, 姚志浩, 李大禹, 郭婧, 姚凯俊, 董建新. γ' 相含量粉末及变形高温合金组织和力学性能的异同性[J]. 金属学报, 2025, 61(9): 1364-1374.
[3] 吴志勇, 邵徽凡, 蔡长春, 曾敏, 王振军, 王艳丽, 陈雷, 熊博文. 斜纹碳布缝合织物结构增强铝基复合材料的高温拉伸及断裂行为[J]. 金属学报, 2025, 61(9): 1387-1402.
[4] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[5] 肖文龙, 臧晨阳, 郭锦涛, 冯佳文, 马朝利. 基于原位电阻法的7A65铝合金厚板双级时效工艺[J]. 金属学报, 2025, 61(8): 1153-1164.
[6] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[7] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 谷金波. 喷射成形工艺对M3高速钢碳化物特征及力学性能的影响[J]. 金属学报, 2025, 61(8): 1229-1244.
[8] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[9] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[10] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[11] 钦兰云, 张健, 伊俊振, 崔岩峰, 杨光, 王超. 固溶时效对激光沉积修复ZM6合金组织及力学性能的影响[J]. 金属学报, 2025, 61(6): 875-886.
[12] 李夫顺, 刘志鹏, 丁灿灿, 胡斌, 罗海文. 一种新型高强奥氏体低密度钢的强塑性机理[J]. 金属学报, 2025, 61(6): 909-916.
[13] 雷云龙, 杨康, 辛越, 姜自滔, 童宝宏, 张世宏. 机械合金化AlCrCu0.5Mo0.5Ni高熵合金及其后续退火态的结构演化[J]. 金属学报, 2025, 61(5): 731-743.
[14] 周任远, 朱丽慧. Inconel 740H焊接接头不同温度蠕变后 γ贫化区的形成及其对力学性能的影响[J]. 金属学报, 2025, 61(5): 744-756.
[15] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.