Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1174-1182    DOI: 10.11900/0412.1961.2023.00205
  研究论文 本期目录 | 过刊浏览 |
B含量调控Fe98.5 -x B x Cu1.5 纳米晶合金组织结构和磁性能
朱春健1, 李艳辉1, 朱正旺2, 吴立成1, 张海峰2, 张伟1()
1.大连理工大学 材料科学与工程学院 大连 116024
2.东北大学 冶金学院 沈阳 110819
Regulation of Structure and Magnetic Properties of Fe98.5 -x B x Cu1.5 Nanocrystalline Alloys Based on B Content
ZHU Chunjian1, LI Yanhui1, ZHU Zhengwang2, WU Licheng1, ZHANG Haifeng2, ZHANG Wei1()
1.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

朱春健, 李艳辉, 朱正旺, 吴立成, 张海峰, 张伟. B含量调控Fe98.5 -x B x Cu1.5 纳米晶合金组织结构和磁性能[J]. 金属学报, 2025, 61(8): 1174-1182.
Chunjian ZHU, Yanhui LI, Zhengwang ZHU, Licheng WU, Haifeng ZHANG, Wei ZHANG. Regulation of Structure and Magnetic Properties of Fe98.5 -x B x Cu1.5 Nanocrystalline Alloys Based on B Content[J]. Acta Metall Sin, 2025, 61(8): 1174-1182.

全文: PDF(2561 KB)   HTML
摘要: 

为研发具有良好软磁性和工艺性的高饱和磁感应强度(Bs) 铁基纳米晶合金,本工作以高Fe含量的Fe-B-Cu合金体系为对象,研究了B含量对Fe98.5 - x B x Cu1.5 (x = 12~18,原子分数,%)系快淬合金带材的微结构、结晶化组织和磁性能的影响,分析了B含量-快淬微结构-结晶化组织-磁性能间的关联。结果表明,快淬合金均为非晶基体中分布着纳米尺度α-Fe晶粒(预存α-Fe晶)的结构;随x由12增加至18,非晶基体中预存α-Fe晶的数密度和晶粒尺寸逐渐降低,结构转变为近非晶态。经低升温速率热处理后,x = 12~17时合金均为非晶/α-Fe纳米晶双相结构,而x = 18时合金形成了非晶/α-Fe/Fe3B纳米复相组织结构;x = 13~16时合金具有微细的纳米晶组织和较好的软磁性能,α-Fe相的平均晶粒尺寸(D¯α-Fe)、Bs和矫顽力(Hc)分别在15.8~16.3 nm、1.80~1.91 T和18.9~22.7 A/m的范围内,其中x = 15时合金的D¯α-Fe、BsHc分别为16.0 nm、1.86 T和18.9 A/m。基于合金热处理前后的组织结构演化,提出了不同B含量快淬合金的结晶化模型,阐明了快淬合金非晶基体中高数密度的细小预存α-Fe晶粒间以及与热处理结晶化新生α-Fe晶粒间的强竞争生长效应,导致均匀、微细纳米晶组织形成的机制。

关键词 铁基Fe-B-Cu合金纳米晶合金B含量预存α-Fe晶晶化行为软磁性能    
Abstract

With the development of electromagnetic devices towards high-frequency, miniaturization, and high efficiency, the demand for the soft magnetic nanocrystalline alloys with high saturation magnetic flux density (Bs), excellent high-frequency performance, as well as good manufacturability is becoming increasingly urgent. In this work, the effects of B content on the melt-spun structure, thermal stability, crystallization structure, and magnetic properties of Fe98.5 - x B x Cu1.5 (x = 12-18, atomic fraction, %) alloy ribbons were investigated; and the correlation among B content, melt-spun structure, crystallization structure, and magnetic properties was explored. The results show that the melt-spun structure of all the alloys is a dual-phase composed of α-Fe nanograins distributing in an amorphous matrix. As the x increases from 12 to 18, the number density and grain size of the α-Fe grains gradually decrease, and the structure transforms into a nearly amorphous state. After crystallization annealing under a low heating rate, the alloys with x = 12-17 have the amorphous/nanocrystalline α-Fe dual-phase structure, while the x = 18 alloy forms a amorphous/α-Fe/Fe3B tri-phase structure. The alloys with x = 13-16 exhibit a fine nanocrystalline structure and good soft magnetic properties with the average α-Fe grain size (D¯α-Fe) of 15.8-16.3 nm, Bs of 1.80-1.91 T, and coercivity (Hc)of 18.9-22.7 A/m. Among them, the alloywith x = 15 has the D¯α-Fe, Bs, and Hc of 16.0 nm, 1.86 T, and 18.9 A/m, respectively. Based on the structure of the alloys before and after annealing, a crystallization model for the melt-spun alloys with different B contents was proposed, and the mechanism of which the strong competitive growth effect between the high-number-density pre-existing fine α-Fe nanograins in the amorphous matrix of the melt-spun alloys along with the newly-formed α-Fe grains during crystallization annealing results in the uniform and fine nanocrystalline structure of the alloys was elucidated.

Key wordsFe-based Fe-B-Cu alloy    nanocrystalline alloy    B content    pre-existing α-Fe nanograin    crystallization behavior    soft magnetic property
收稿日期: 2023-05-08     
ZTFLH:  TG132.2  
基金资助:国家重点研发计划项目(2022YFB3804100);国家自然科学基金项目(52171153)
通讯作者: 张 伟,wzhang@dlut.edu.cn,主要从事非晶态合金、纳米材料和磁性材料的研究
Corresponding author: ZHANG Wei, professor, Tel: (0411)84706063, E-mail: wzhang@dlut.edu.cn
作者简介: 朱春健,男,1998年生,硕士生
图1  Fe98.5 - x B x Cu1.5 (x = 12~18,原子分数,%)快淬合金的XRD谱
图2  Fe98.5 - x B x Cu1.5 (x = 12~18)快淬合金的DSC曲线
x

Tx1

K

Tx2

K

ΔT

K

Nd

m-3

d¯α-Fe

nm

Toa

K

D¯α-Fe

nm

Vα-Fe

%

Bs

T

Hc

A·m-1

125997691701.0 × 102312.665822.868.11.9384.6
13612767155--65816.265.71.9122.7
14622767145--65815.861.11.8820.2
156347651315.9 × 10224.865816.060.21.8618.9
16644765121--65816.359.61.8019.3
17659762103--65818.747.01.6730.1
18679747682.7 × 10212.867328.242.91.44304.1
表1  Fe98.5 - x B x Cu1.5 (x = 12~18)快淬合金以及经最佳温度(Toa)热处理60 min后合金的热分析和磁性能分析结果
图3  Fe98.5 - x B x Cu1.5快淬合金的TEM明场像和HRTEM像
图4  Fe98.5 - x B x Cu1.5 (x = 12~18)合金在不同温度下等温晶化热处理60 min后饱和磁感应强度(Bs)和矫顽力(Hc)与热处理温度(Ta)的关系
图5  经Toa热处理60 min后Fe98.5 - x B x Cu1.5 (x = 12~18)合金的Bs和Hc与B含量的关系
图6  经Toa热处理后Fe98.5 - x B x Cu1.5 (x = 12~18)合金的XRD谱
图7  经Toa热处理60 min后Fe98.5 - x B x Cu1.5合金的TEM明场像、SAED谱和晶粒尺寸分布图
图8  Fe98.5 - x B x Cu1.5快淬合金的结晶化过程示意图
图9  Fe98.5 - x B x Cu1.5 (x = 12~18)纳米晶合金在Toa热处理60 min后α-Fe的体积分数和平均尺寸与B含量的关系
[1] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. J. Appl. Phys., 1988, 64: 6044
[2] Suzuki K, Makino A, Inoue A, et al. Low core losses of nanocrystalline Fe-M-B (M = Zr, Hf, or Nb) alloys [J]. J. Appl. Phys., 1993, 74: 3316
[3] Willard M A, Laughlin D E, Mchenry M E, et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys [J]. J. Appl. Phys., 1998, 84: 6773
[4] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets [J]. Prog. Mater. Sci., 1999, 44: 291
[5] Herzer G. Modern soft magnets: Amorphous and nanocrystalline materials [J]. Acta Mater., 2013, 61: 718
[6] Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26: 1397
[7] Ohta M, Yoshizawa Y. Improvement of soft magnetic properties in (Fe0.85B0.15)100 - x Cu x melt-spun alloys [J]. Mater. Trans., 2007, 48: 2378
[8] Ohta M, Yoshizawa Y. Effect of heating rate on soft magnetic properties in nanocrystalline Fe80.5Cu1.5Si4B14 and Fe82Cu1Nb1Si4B12 alloys [J]. Appl. Phys. Express, 2009, 2: 023005
[9] Makino A, Men H, Kubota T, et al. FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 tesla produced by crystallizing hetero-amorphous phase [J]. Mater. Trans., 2009, 50: 204
[10] Makino A, Kubota T, Yubuta K, et al. Low core losses and magnetic properties of Fe85 - 86Si1 - 2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited) [J]. J. Appl. Phys., 2011, 109: 07A302
[11] Sharma P, Zhang X, Zhang Y, et al. Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys [J]. Scr. Mater., 2015, 95: 3
[12] Li Y H, Jia X J, Xu Y Q, et al. Soft magnetic Fe-Si-B-Cu nanocrystalline alloys with high Cu concentrations [J]. J. Alloys Compd., 2017, 722: 859
[13] Li Y H, Jia X J, Zhang W, et al. Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 65: 171
[14] Zang B, Parsons R, Onodera K, et al. Effect of heating rate during primary crystallization on soft magnetic properties of melt-spun Fe-B alloys [J]. Scr. Mater., 2017, 132: 68
[15] Wu L C, Li Y H, Yubuta K, et al. Optimization of the structure and soft magnetic properties of a Fe87B13 nanocrystalline alloy by additions of Cu and Nb [J]. J. Magn. Magn. Mater., 2020, 497: 166001
[16] Makino A. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8-1.9 T contributable to energy saving [J]. IEEE Trans. Magn., 2012, 48: 1331
[17] Fan X D, Men H, Ma A B, et al. The influence of Si substitution on soft magnetic properties and crystallization behavior in Fe83B10C6 - x Si x Cu1 alloy system [J]. Sci. China: Technol. Sci., 2012, 55: 2416
[18] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[19] Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
[20] Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
[21] Allia P, Baricco M, Tiberto P, et al. Kinetics of the amorphous-to-nanocrystalline transformation in Fe73.5Cu1Nb3Si13.5B9 [J]. J. Appl. Phys., 1993, 74: 3137
[22] Jia X J, Li Y H, Wu L C, et al. The role of Cu content on structure and magnetic properties of Fe-Si-B-P-Cu nanocrystalline alloys [J]. J. Mater. Sci., 2019, 54: 4400
[23] Takahashi M, Koshimura M, Abuzuka T. Phase diagram of amorphous and crystallized Fe-B alloy system [J]. Jpn. J. Appl. Phys., 1981, 20: 1821
[24] Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
[25] Hagiwara M, Inoue A, Masumoto T. Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method [J]. Metall. Trans., 1982, 13A: 373
[26] Su J J, Wang G T, Yang Y Z, et al. Effects of tuning Fe/B contents on crystallization behaviors and magnetic properties in novel Si-free Fe-B-C-Cu-Nb Alloys [J]. J. Supercond. Nov. Magn., 2023, 36: 559
[27] Xiao L, Zhang K, Hua Z, et al. Effects of boron content on crystallization, formability and magnetic properties of Fe91 - x Zr5B x Nb4 amorphous alloys [J]. Acta Metall. Sin., 2005, 41: 203
[27] 肖 利, 张 可, 华 中 等. 硼含量对Fe-Zr-B-Nb非晶合金的晶化、形成能力和磁性能的影响 [J]. 金属学报, 2005, 41: 203
[28] Kojima A, Horikiri H, Kawamura Y, et al. Soft magnetic properties of bulk nanocrystalline Fe-(Nb, Zr, Hf)-B alloys produced by extruding amorphous powders [J]. J. Magn. Magn. Mater., 1996, 162: 95
[29] Ohta M, Yoshizawa Y. High Bs nanocrystalline Fe84 - x - y Cu x Nb y-Si4B12 alloys (x = 0.0-1.4, y = 0.0-2.5) [J]. J. Magn. Magn. Mater., 2009, 321: 2220
[30] Chen Y M, Ohkubo T, Ohta M, et al. Three-dimensional atom probe study of Fe-B-based nanocrystalline soft magnetic materials [J]. Acta Mater., 2009, 57: 4463
[1] 葛蓬华, 张勇, 李志明. 异构FeCoNi中熵合金的软磁与力学行为[J]. 金属学报, 2025, 61(7): 1119-1128.
[2] 谢昂, 陈胜虎, 姜海昌, 戎利建. Nb含量和均质化处理对奥氏体不锈钢铸态组织和力学性能的影响[J]. 金属学报, 2025, 61(7): 1035-1048.
[3] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[4] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[5] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[6] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[7] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[8] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[9] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[10] 彭志方,党莹樱,彭芳芳. C和Nb含量对TP347HFG钢在650 ℃析出相参量和持久寿命的影响[J]. 金属学报, 2012, 48(4): 450-454.
[11] 李定朋 宋晓艳 张哲旭 卢年端 乔印凯 刘雪梅. 单相Sm5Co2纳米晶合金的制备及其性能研究[J]. 金属学报, 2012, 48(10): 1248-1252.
[12] 刘彤 朱亚蓉 张同文 张涛. 加压退火对Gd36La20Al24Co20块体非晶合金晶化行为和热稳定性的影响[J]. 金属学报, 2011, 47(4): 502-506.
[13] 梁海宁 宋晓艳 张哲旭 卢年端 刘雪梅 张久兴. 具有永磁性能的SmCo2纳米晶合金化合物的制备与表征[J]. 金属学报, 2010, 46(8): 973-978.
[14] 吴泽宇 郭胜锋 李宁 柳林. Co对Fe--B--Y--Nb块体非晶合金玻璃形成能力及软磁性能的影响[J]. 金属学报, 2009, 45(2): 249-252.
[15] 陈卫平; 萧淑琴; 王文静; 刘宜华 . 沉积态 (Fe88Zr7B5)0.97Cu0.03软磁合金薄膜的磁性和巨磁阻抗效应[J]. 金属学报, 2004, 40(12): 1295-1298 .