Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1141-1152    DOI: 10.11900/0412.1961.2023.00320
  研究论文 本期目录 | 过刊浏览 |
峰值应力对Ti6242压气机盘锻件室温保载效应的影响
徐小严1, 方超2,3, 邱建科2,3(), 张蒙蒙2,3, 史栋刚1, 马英杰2,3, 雷家峰2,3, 杨锐2,3()
1.中国航发商用航空发动机有限责任公司 上海 200241
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3.中国科学技术大学 材料科学与工程学院 沈阳 110016
Influence of Peak Stress on Room Temperature Dwell Effect in Ti6242 Compressor Disc Forging
XU Xiaoyan1, FANG Chao2,3, QIU Jianke2,3(), ZHANG Mengmeng2,3, SHI Donggang1, MA Yingjie2,3, LEI Jiafeng2,3, YANG Rui2,3()
1.AECC Commercial Aircraft Engine Co. Ltd., Shanghai 200241, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

徐小严, 方超, 邱建科, 张蒙蒙, 史栋刚, 马英杰, 雷家峰, 杨锐. 峰值应力对Ti6242压气机盘锻件室温保载效应的影响[J]. 金属学报, 2025, 61(8): 1141-1152.
Xiaoyan XU, Chao FANG, Jianke QIU, Mengmeng ZHANG, Donggang SHI, Yingjie MA, Jiafeng LEI, Rui YANG. Influence of Peak Stress on Room Temperature Dwell Effect in Ti6242 Compressor Disc Forging[J]. Acta Metall Sin, 2025, 61(8): 1141-1152.

全文: PDF(4187 KB)   HTML
摘要: 

针对我国商用航空发动机大尺寸Ti6242合金压气机盘,开展了峰值应力对其室温保载效应影响的研究。利用Basquin方程式拟合了疲劳寿命与应力的关系,获得了保载效应应力门槛值。采用OM、SEM、XCT、EBSD和TEM等表征和分析了Ti6242合金保载效应强弱变化的失效特征及微观机制。结果表明,保载疲劳易于促使Ti6242合金形成稠密的位错平面滑移带,滑移带易穿越次生α相(αs)片层,形成长距离滑移;增加应力会使裂纹萌生所需的晶体学条件放宽,使得软、硬晶粒分别在不利角度下启动位错滑移并解理开裂,形成空间取向角范围更大的解理小平面以及更多的疲劳裂纹,并开动难滑移的<c + a>位错和锥面滑移。利用XCT技术量化表征保载疲劳二次裂纹,间接测得Ti6242压气机盘中微织构的平均尺寸约为72 μm。根据断口小平面空间取向角结果,提出了基于EBSD数据识别适于反映保载疲劳性能的特征组织参数方法。

关键词 Ti6242合金保载疲劳峰值应力准解理小平面微织构    
Abstract

Cold dwell-fatigue failure in titanium components of gas turbine engines has been a concern for over five decades, posing a continuous threat to the safe operation of aircrafts. Owing to the complexity of influencing factors and mechanisms, there has been a lack of complete understanding and effective prevention of cold dwell effect. In this study, the effects of peak stresses on the dwell effect at room temperature were investigated, focusing on a large compressor disc manufactured from Ti6242 alloy, specifically designed for use in commercial aeroengines in China. The relationships between fatigue life and peak stress were fitted by the Basquin equation, and the stress threshold value of cold dwell effect was obtained. A detailed characterization of the fatigue failure characteristics and microscopic mechanisms was performed using OM, SEM, XCT, EBSD, and TEM techniques. The results revealed a progression of dwell fatigue-fracture characteristics in Ti6242 alloy as the peak stress increased from near-threshold value of the dwell effect to the value exceeding the yield strength. The failure characteristics included initiation of surface crack, mixed surface and subsurface crack, subsurface crack, and mixed subsurface crack and tensile dimples. Initiation facets formed due to dwell fatigue loading exhibited decreasing spatial angles with increasing peak stress levels in the range of ~20o-44o for the stress levels studied. However, the spatial orientations of the propagation facets formed due to dwell fatigue loading were unaffected by the peak stress and remained at less than ~20o. Dwell fatigue stimulated the formation of dense dislocation planar slip bands, facilitating their transfer across the secondary α (αs) lamellae and eventually resulting in long-distance slips. Increasing stress further relaxed the crystallographic conditions necessary for the crack initiation, leading to dislocation sliding and cleavage cracking in unfavorably oriented soft and hard grains. Consequently, at higher stress levels the cleavage facets exhibited a larger spatial orientation range, accompanied by the formation of more fatigue cracks. In the case of dwell fatigue, high-stress levels activated <c + a> dislocations and pyramidal slips. The size and number of fatigue cracks were related to the peak stress. Quantitative characterization of secondary cracks in the dwell fatigue specimens using XCT indirectly showed the average size of macrozones in Ti6242 compressor disc to be approximately 72 μm. The Ti6242 compressor disc exhibited a relatively strong texture, featuring a <112¯0> partial fiber along the axial direction and a <0001> partial fiber aligned with the radial and transverse directions. Based on the spatial orientation of facets on the fracture surface, a method using EBSD data to identify a microstructural feature parameter indicative of dwell fatigue performance was proposed, i.e., the cluster size of α grains with the c-axes inclined within ~30° to the loading direction.

Key wordsTi6242 alloy    dwell fatigue    peak stress    quasi-cleavage facet    microtexture
收稿日期: 2023-08-10     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(91960202);国家自然科学基金项目(51701219);国家重点研发计划项目(2021YFC2800503);国家重点研发计划项目(2022YFB3708300);中国科学院稳定支持基础研究领域青年团队计划项目(YSBR-025);中国科学院青年创新促进会项目(2022188)
通讯作者: 邱建科,jkqiu@imr.ac.cn,主要从事钛合金研究;
杨 锐,ryang@imr.ac.cn,主要从事钛合金研究
Corresponding author: QIU Jianke, professor, Tel: (024)83970131, E-mail: jkqiu@imr.ac.cn;
作者简介: 徐小严,女,1985年生,高级工程师,博士
第一联系人:方 超(共同第一作者),男,1998年生,博士生
图1  Ti6242合金压气机盘取样示意图及典型组织,常规疲劳和保载疲劳实验条件,及疲劳和拉伸实验试样几何尺寸
图2  Ti6242合金常规疲劳和保载疲劳寿命随峰值应力的变化
图3  不同峰值应力下Ti6242合金常规疲劳和保载疲劳断口形貌的OM像
图4  不同峰值应力下Ti6242合金保载疲劳断口的SEM像
图5  不同峰值应力下Ti6242合金常规疲劳和保载疲劳断口上准解理小平面的空间取向分布
图6  Ti6242合金常规疲劳断口的XCT三维成像
图7  Ti6242合金保载疲劳断口的XCT三维成像

Fatigue

waveform

Peak stress

MPa

Number of

secondary crack

Maximum individual size

μm

Average individual size

μm

NF0.94σ0.242114862
1.05σ0.210138692
DF0.85σ0.2256641
0.94σ0.23626694
0.98σ0.228264767
1.05σ0.2372043955
表1  基于三维XCT数据统计的常规疲劳和保载疲劳断口中二次裂纹的数目及尺寸
图8  Ti6242合金压气机盘轴向-径向(AD-RD)面上的微织构分析
图9  不同峰值应力下Ti6242合金常规疲劳样品中位错运动特征的TEM明场像
图10  不同峰值应力下Ti6242合金保载疲劳样品中位错运动特征的TEM明场像
[1] Bache M R. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
[2] Garvey J F. National Transportation Safety Board Safety Recommendation [R]. Washington, D. C.: National Transportation Safety Board, 2000
[3] BEA. Accident to the AIRBUS A380-861 equipped with Engine Alliance GP7270 engines registered F-HPJE operated by Air France on 30 September 2017 in cruise over Greenland (Denmark) [R]. France: French Civil Aviation Safety Investigation Authority, 2020
[4] Evans W J. Dwell-sensitive fatigue in a near alpha-titanium alloy [J]. J. Mater. Sci. Lett., 1987, 6: 571
[5] Evans W J, Bache M R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 [J]. Int. J. Fatigue, 1994, 16: 443
[6] Bache M R, Cope M, Davies H M, et al. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature [J]. Int. J. Fatigue, 1997, 19: S83
[7] Woodfield A P, Gorman M D, Sutliff J A, et al. Effect of microstructure on dwell fatigue behavior of Ti-6242 [A]. Proceedings of the International Symposium on Fatigue Behavior of Titanium Alloys [C]. Chicago: TMS, 1999: 111
[8] Lavogiez C, Dureau C, Nadot Y, et al. Crack initiation mechanisms in Ti-6Al-4V subjected to cold dwell-fatigue, low-cycle fatigue and high-cycle fatigue loadings [J]. Acta Mater., 2023, 244: 118560
[9] Hémery S, Stinville J C. Microstructural and load hold effects on small fatigue crack growth in α + β dual phase Ti alloys [J]. Int. J. Fatigue, 2022, 156: 106699
[10] Sinha V, Mills M J, Williams J C. Crystallography of fracture facets in a near-alpha titanium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2015
[11] Sinha V, Mills M J, Williams J C, et al. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects [J]. Metall. Mater. Trans., 2006, 37A: 1507
[12] Uta E, Gey N, Bocher P, et al. Texture heterogeneities in αP/αS titanium forging analysed by EBSD-relation to fatigue crack propagation [J]. J. Microsc., 2009, 233: 451
[13] Pilchak A L, Williams J C. Observations of facet formation in near-α titanium and comments on the role of hydrogen [J]. Metall. Mater. Trans., 2011, 42A: 1000
[14] Stroh A N. The formation of cracks as a result of plastic flow [J]. Proc. Roy. Soc., 1954, 223A: 404
[15] Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
[16] Pilchak A L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys [J]. Scr. Mater., 2014, 74: 68
[17] Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
[18] Mcbagonluri F, Akpan E, Mercer C, et al. An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242 [J]. Mater. Sci. Eng., 2005, A405: 111
[19] Zeng W D, Zhou Y G. The influence of microstructure on dwell sensitive fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy [J]. Mater. Sci. Eng., 2000, A290: 33
[20] Chandravanshi V, Prasad K, Singh V, et al. Effects of α + β phase deformation on microstructure, fatigue and dwell fatigue behavior of a near alpha titanium alloy [J]. Int. J. Fatigue, 2016, 91: 100
[21] Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
[22] Harr M E, Daly S, Pilchak A L. The effect of temperature on slip in microtextured Ti-6Al-2Sn-4Zr-2Mo under dwell fatigue [J]. Int. J. Fatigue, 2021, 147: 106173
[23] You R Y, Zhang M M, Qiu J K, et al. Influence of hold time on dwell fatigue behavior in IMI834 disc forging [J]. JOM, 2022, 74: 3733
[24] Liu Y, Dunne F P E. The mechanistic link between macrozones and dwell fatigue in titanium alloys [J]. Int. J. Fatigue, 2021, 142: 105971
[25] Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
[26] Dunne F P E, Rugg D. On the mechanisms of fatigue facet nucleation in titanium alloys [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 949
[27] Shen W, Soboyejo W O, Soboyejo A B O. An investigation on fatigue and dwell-fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo-0.1Si [J]. Mech. Mater., 2004, 36: 117
[28] Sinha V, Mills M J, Williams J C. Determination of crystallographic orientation of dwell-fatigue fracture facets in Ti-6242 alloy [J]. J. Mater. Sci., 2007, 42: 8334
[29] Sinha V, Jha S K, Pilchak A L, et al. Quantitative characterization of microscale fracture features in titanium alloys [J]. Metallogr. Microstruct. Anal., 2017, 6: 261
[30] Sinha V, Pilchak A L, Jha S K, et al. Correlating scatter in fatigue life with fracture mechanisms in forged Ti-6242Si alloy [J]. Metall. Mater. Trans., 2018, 49A: 1061
[31] Themelis G, Chikwembani S, Weertman J. Determination of the orientation of Cu-Bi grain boundary facets using a photogrammetric technique [J]. Mater. Charact., 1990, 24: 27
[32] Ranjan A, Singh A, Jha J S, et al. Effect of the primary alpha fraction on the dwell fatigue behaviour of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2023, 175: 107745
[33] Sinha V, Mills M J, Williams J C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy [J]. Metall. Mater. Trans., 2004, 35A: 3141
[34] Pilchak A L, Bhattacharjee A, Rosenberger A H, et al. Low ΔK faceted crack growth in titanium alloys [J]. Int. J. Fatigue, 2009, 31: 989
[35] Suresh S, translated by Wang Z G. Fatigue of Materials [M]. 2nd Ed., Beijing: National Defense Industry Press, 1999: 209
[35] Suresh S著, 王中光 译. 材料的疲劳 [M]. 第2版. 北京: 国防工业出版社, 1999: 209
[36] Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales [J]. Acta Mater., 2008, 56: 3951
[37] Lavogiez C, Hémery S, Villechaise P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V [J]. Scr. Mater., 2020, 183: 117
[38] Hémery S, Stinville J C, Wang F, et al. Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys [J]. Acta Mater., 2021, 219: 117227
[39] Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
[40] Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
[41] Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
[42] Germain L, Samih Y, Delaleau P, et al. Analysis of cold dwell fatigue crack initiation site in a β-forged Ti-6242 disk in relation with local texture [J]. Metals, 2020, 10: 951
[43] Kirane K, Ghosh S. A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE model [J]. Int. J. Fatigue, 2008, 30: 2127
[1] 齐敏, 王倩, 马英杰, 曹贺萌, 黄森森, 雷家峰, 杨锐. Ti6246钛合金 βα 相变中晶界 α 相生长行为及其对微织构的影响[J]. 金属学报, 2025, 61(2): 265-277.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[4] 孙秀荣, 王会珍, 杨平, 毛卫民. 不同结构金属高速压缩力学行为及微观剪切结构差异*[J]. 金属学报, 2014, 50(4): 387-394.
[5] 陈雷 王龙妹 杜晓建 刘晓. 2205双相不锈钢的高温变形行为[J]. 金属学报, 2010, 46(1): 52-56.