|
|
峰值应力对Ti6242压气机盘锻件室温保载效应的影响 |
徐小严1, 方超2,3, 邱建科2,3( ), 张蒙蒙2,3, 史栋刚1, 马英杰2,3, 雷家峰2,3, 杨锐2,3( ) |
1.中国航发商用航空发动机有限责任公司 上海 200241 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3.中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Influence of Peak Stress on Room Temperature Dwell Effect in Ti6242 Compressor Disc Forging |
XU Xiaoyan1, FANG Chao2,3, QIU Jianke2,3( ), ZHANG Mengmeng2,3, SHI Donggang1, MA Yingjie2,3, LEI Jiafeng2,3, YANG Rui2,3( ) |
1.AECC Commercial Aircraft Engine Co. Ltd., Shanghai 200241, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
徐小严, 方超, 邱建科, 张蒙蒙, 史栋刚, 马英杰, 雷家峰, 杨锐. 峰值应力对Ti6242压气机盘锻件室温保载效应的影响[J]. 金属学报, 2025, 61(8): 1141-1152.
Xiaoyan XU,
Chao FANG,
Jianke QIU,
Mengmeng ZHANG,
Donggang SHI,
Yingjie MA,
Jiafeng LEI,
Rui YANG.
Influence of Peak Stress on Room Temperature Dwell Effect in Ti6242 Compressor Disc Forging[J]. Acta Metall Sin, 2025, 61(8): 1141-1152.
[1] |
Bache M R. A review of dwell sensitive fatigue in titanium alloys: The role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
|
[2] |
Garvey J F. National Transportation Safety Board Safety Recommendation [R]. Washington, D. C.: National Transportation Safety Board, 2000
|
[3] |
BEA. Accident to the AIRBUS A380-861 equipped with Engine Alliance GP7270 engines registered F-HPJE operated by Air France on 30 September 2017 in cruise over Greenland (Denmark) [R]. France: French Civil Aviation Safety Investigation Authority, 2020
|
[4] |
Evans W J. Dwell-sensitive fatigue in a near alpha-titanium alloy [J]. J. Mater. Sci. Lett., 1987, 6: 571
|
[5] |
Evans W J, Bache M R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 [J]. Int. J. Fatigue, 1994, 16: 443
|
[6] |
Bache M R, Cope M, Davies H M, et al. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature [J]. Int. J. Fatigue, 1997, 19: S83
|
[7] |
Woodfield A P, Gorman M D, Sutliff J A, et al. Effect of microstructure on dwell fatigue behavior of Ti-6242 [A]. Proceedings of the International Symposium on Fatigue Behavior of Titanium Alloys [C]. Chicago: TMS, 1999: 111
|
[8] |
Lavogiez C, Dureau C, Nadot Y, et al. Crack initiation mechanisms in Ti-6Al-4V subjected to cold dwell-fatigue, low-cycle fatigue and high-cycle fatigue loadings [J]. Acta Mater., 2023, 244: 118560
|
[9] |
Hémery S, Stinville J C. Microstructural and load hold effects on small fatigue crack growth in α + β dual phase Ti alloys [J]. Int. J. Fatigue, 2022, 156: 106699
|
[10] |
Sinha V, Mills M J, Williams J C. Crystallography of fracture facets in a near-alpha titanium alloy [J]. Metall. Mater. Trans., 2006, 37A: 2015
|
[11] |
Sinha V, Mills M J, Williams J C, et al. Observations on the faceted initiation site in the dwell-fatigue tested Ti-6242 alloy: Crystallographic orientation and size effects [J]. Metall. Mater. Trans., 2006, 37A: 1507
|
[12] |
Uta E, Gey N, Bocher P, et al. Texture heterogeneities in αP/αS titanium forging analysed by EBSD-relation to fatigue crack propagation [J]. J. Microsc., 2009, 233: 451
|
[13] |
Pilchak A L, Williams J C. Observations of facet formation in near-α titanium and comments on the role of hydrogen [J]. Metall. Mater. Trans., 2011, 42A: 1000
|
[14] |
Stroh A N. The formation of cracks as a result of plastic flow [J]. Proc. Roy. Soc., 1954, 223A: 404
|
[15] |
Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x = 2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
|
[16] |
Pilchak A L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys [J]. Scr. Mater., 2014, 74: 68
|
[17] |
Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
|
[18] |
Mcbagonluri F, Akpan E, Mercer C, et al. An investigation of the effects of microstructure on dwell fatigue crack growth in Ti-6242 [J]. Mater. Sci. Eng., 2005, A405: 111
|
[19] |
Zeng W D, Zhou Y G. The influence of microstructure on dwell sensitive fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy [J]. Mater. Sci. Eng., 2000, A290: 33
|
[20] |
Chandravanshi V, Prasad K, Singh V, et al. Effects of α + β phase deformation on microstructure, fatigue and dwell fatigue behavior of a near alpha titanium alloy [J]. Int. J. Fatigue, 2016, 91: 100
|
[21] |
Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
|
[22] |
Harr M E, Daly S, Pilchak A L. The effect of temperature on slip in microtextured Ti-6Al-2Sn-4Zr-2Mo under dwell fatigue [J]. Int. J. Fatigue, 2021, 147: 106173
|
[23] |
You R Y, Zhang M M, Qiu J K, et al. Influence of hold time on dwell fatigue behavior in IMI834 disc forging [J]. JOM, 2022, 74: 3733
|
[24] |
Liu Y, Dunne F P E. The mechanistic link between macrozones and dwell fatigue in titanium alloys [J]. Int. J. Fatigue, 2021, 142: 105971
|
[25] |
Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
|
[26] |
Dunne F P E, Rugg D. On the mechanisms of fatigue facet nucleation in titanium alloys [J]. Fatigue Fract. Eng. Mater. Struct., 2008, 31: 949
|
[27] |
Shen W, Soboyejo W O, Soboyejo A B O. An investigation on fatigue and dwell-fatigue crack growth in Ti-6Al-2Sn-4Zr-2Mo-0.1Si [J]. Mech. Mater., 2004, 36: 117
|
[28] |
Sinha V, Mills M J, Williams J C. Determination of crystallographic orientation of dwell-fatigue fracture facets in Ti-6242 alloy [J]. J. Mater. Sci., 2007, 42: 8334
|
[29] |
Sinha V, Jha S K, Pilchak A L, et al. Quantitative characterization of microscale fracture features in titanium alloys [J]. Metallogr. Microstruct. Anal., 2017, 6: 261
|
[30] |
Sinha V, Pilchak A L, Jha S K, et al. Correlating scatter in fatigue life with fracture mechanisms in forged Ti-6242Si alloy [J]. Metall. Mater. Trans., 2018, 49A: 1061
|
[31] |
Themelis G, Chikwembani S, Weertman J. Determination of the orientation of Cu-Bi grain boundary facets using a photogrammetric technique [J]. Mater. Charact., 1990, 24: 27
|
[32] |
Ranjan A, Singh A, Jha J S, et al. Effect of the primary alpha fraction on the dwell fatigue behaviour of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2023, 175: 107745
|
[33] |
Sinha V, Mills M J, Williams J C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy [J]. Metall. Mater. Trans., 2004, 35A: 3141
|
[34] |
Pilchak A L, Bhattacharjee A, Rosenberger A H, et al. Low ΔK faceted crack growth in titanium alloys [J]. Int. J. Fatigue, 2009, 31: 989
|
[35] |
Suresh S, translated by Wang Z G. Fatigue of Materials [M]. 2nd Ed., Beijing: National Defense Industry Press, 1999: 209
|
[35] |
Suresh S著, 王中光 译. 材料的疲劳 [M]. 第2版. 北京: 国防工业出版社, 1999: 209
|
[36] |
Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales [J]. Acta Mater., 2008, 56: 3951
|
[37] |
Lavogiez C, Hémery S, Villechaise P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V [J]. Scr. Mater., 2020, 183: 117
|
[38] |
Hémery S, Stinville J C, Wang F, et al. Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys [J]. Acta Mater., 2021, 219: 117227
|
[39] |
Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
|
[40] |
Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
|
[41] |
Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
|
[42] |
Germain L, Samih Y, Delaleau P, et al. Analysis of cold dwell fatigue crack initiation site in a β-forged Ti-6242 disk in relation with local texture [J]. Metals, 2020, 10: 951
|
[43] |
Kirane K, Ghosh S. A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE model [J]. Int. J. Fatigue, 2008, 30: 2127
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|