Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 59-76    DOI: 10.11900/0412.1961.2024.00146
  综述 本期目录 | 过刊浏览 |
激光熔覆难熔高熵合金涂层研究进展
夏兴川1(), 张恩宽1, 丁俭1, 王玉江2, 刘永长3
1 河北工业大学 材料科学与工程学院 天津 300401
2 中国人民解放军陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072
3 天津大学 材料科学与工程学院 天津 300072
Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings
XIA Xingchuan1(), ZHANG Enkuan1, DING Jian1, WANG Yujiang2, LIU Yongchang3
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
3 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
引用本文:

夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
Xingchuan XIA, Enkuan ZHANG, Jian DING, Yujiang WANG, Yongchang LIU. Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. Acta Metall Sin, 2025, 61(1): 59-76.

全文: PDF(4162 KB)   HTML
摘要: 

难熔高熵合金(RHEAs)是一种由多种难熔元素组成的新型合金,具有优异的高温力学、高温抗氧化、摩擦磨损、耐腐蚀和抗辐照等综合性能,有望应用于航空、航天、核能、石油化工和医疗器械等领域。受限于传统合金熔炼技术,目前制备的高熔点难熔高熵合金存在成型尺寸较小、元素偏析严重以及密度大等问题,极大地限制了难熔高熵合金的发展和应用。激光增材成形技术以高能量密度激光束为加热源,通过计算机辅助设计与控制实现金属材料“离散-堆积”成形过程,为突破难熔高熵合金的研究瓶颈提供了一条行之有效的途径。本文综述了近几年采用激光熔覆技术制备的难熔高熵合金涂层(RHEACs)的加工特性、显微结构和性能特点。重点讨论了合金成分、加工工艺对难熔高熵合金涂层相组成,显微形貌,显微硬度,以及耐磨损、耐腐蚀和抗氧化性能的影响,指出目前激光熔覆难熔高熵合金的研究现状、不足和挑战,并对其未来的发展趋势进行了展望。

关键词 难熔高熵合金激光熔覆显微结构综合性能    
Abstract

Refractory high-entropy alloys (RHEAs) have emerged as an innovative and promising class of high-entropy alloys that are primarily composed of multiple refractory elements, such as Ta, Nb, Mo, W, and Hf. These elements confer to the RHEAs with exceptional mechanical properties at high temperature, including excellent strength and stability. In addition to their desirable high-temperature performance, RHEAs also exhibit remarkable resistance to oxidation, wear, corrosion, and radiation. These resistance characteristics grant them potential as application materials in extreme environments, such as aerospace, nuclear reactors, and high-performance industrial machinery. As application materials, RHEAs have attracted evergrowing attention as the candidate materials to replace the traditional nickel-based superalloys due to their single solid solution phases and excellent stability in terms of structure and performance. Although they are promising, RHEAs fabricated using traditional methods, such as casting and powder metallurgy, present several shortcomings that limit their widespread application. It is often difficult to achieve a uniform composition in RHEAs that are prepared by conventional arc melting, which results in significant elemental segregation. Additionally, the size of the ingots prepared by this way is restricted to a small, button-like scale due to the limitations of the casting molds. These drawbacks significantly restrict the development, customization, and application of RHEAs in various industries, underscoring the need for advanced manufacturing techniques that can overcome these restrictions. Laser additive manufacturing (LAM) has emerged as a transformative approach to addressing the abovementioned challenges. By utilizing a high-energy density laser beam as a heat source, LAM enables a “discrete-stacking” or layer-by-layer forming process that can be precisely controlled through computer-aided design. This process offers exceptional flexibility in the manufacture of complex shapes, the fine-tuning of alloy composition, and the achievement of a uniform microstructure, thereby minimizing problems such as elemental segregation. Additionally, laser cladding (LC), which is a subset of LAM, provides the ability to deposit coatings that demonstrate superior mechanical and chemical properties to the surface of substrates, which further expands the application potential of RHEAs. This study presents a comprehensive review of current research on the LC of RHEAs while focusing on the unique microstructures and properties of RHEA coatings (RHEACs). It delves into the influences of alloy composition and processing parameters on the phase composition, microstructure, microhardness, as well as abrasion, oxidation, and corrosion resistances of RHEACs. Furthermore, this review discusses the evolution of RHEAC microstructure during the LC process and how it affects the performance of the coatings. Lastly, this review summarizes the current state of research on LC-RHEAs and outlines future development trends. It also highlights key challenges such as optimizing processing parameters, improving coating-substrate bonding, and tailoring microstructures for enhanced performance to guide future research studies and industrial applications.

Key wordsrefractory high-entropy alloy    laser cladding    microstructure    performance
收稿日期: 2024-05-08     
ZTFLH:  TG146.4  
基金资助:中央引导地方科技发展资金项目(236Z1007G);国家自然科学基金项目(52175312)
通讯作者: 夏兴川,xc_xia@hebut.edu.cn,主要从事金属结构材料成形技术研究
Corresponding author: XIA Xingchuan, professor, Tel: (022)60202011, E-mail: xc_xia@hebut.edu.cn
作者简介: 夏兴川,男,1981年生,研究员,博士
图1  等离子雾化和喷雾造粒法制备金属粉末原理示意图和合金粉末形貌的SEM像[27,29~31]
图2  激光熔覆(LC)和磁场-LC制备的MoNbTaW难熔高熵合金涂层(RHEACs)截面形貌以及局部区域放大的显微形貌[35]
图3  MoFe x CrTiWAlNb y RHEACs的SEM像[41]
CoatingSubstratePhaseRef.
TiMoWNbZr45 steelbcc + Ti x W1 -x[46]
CrTiMoWNb x Fe y AlM2 steelbcc + Fe2Nb + (Nb, Ti)C*+ W[41,47,48]
(TiZrNb)14SnMoTC4 alloybcc[49]
TiTaZrZrbcc[50]
TiNbTaZrZrbcc[50]
FeCrAlTiMoWNb3M2 steelbcc + Fe2M + (Nb, Ti)C*[51]
NiTiCrNbTa xTC4 alloybcc + Cr2Nb + NiTi2 + B2[52]
AlNbTaZr xTC4 alloybcc + hcp*[53]
AlTiVMoNbTC4 alloybcc[54]
MoNbTaWIN-718bcc + Laves + fcc_(Ni, M)*[36]
AlMoNbTaCu xTC4 alloybcc + hcp_Ti(Al, Cu)2* + fcc_AlCu2Ti* + TiN*[42]
Al0.2CrTiVNbTC4 alloybcc[55]
AlCoCrMoV xSS 904Lbcc + sigma[56]
TiMoNbZrSS 316bcc[57]
TiMoNbTaWTC4 alloybcc#1 + bcc#2[58]
Si3N4 + TiMoNbTaWTC4 alloybcc + (Nb, Ti)5Si3 + TiN[59]
TiMoNbZrTC4 alloybcc + hcp + Mo[38]
TiNiMoNbTaGTD-111bcc + fcc + MC[37]
TiNbTaZrSS 316bcc#1 + bcc#2 + Fe2Nb*[60]
Y2O3 + MoNbTaWIN-718bcc#1 + bcc#2 + fcc_(Fe, Ni)*[61]
MoNbTaWMobcc + fcc + WC[31]
AlTiNbZrTC4 alloybcc + AlTi3 + AlNb3[62]
TiVNbTaTC4 alloybcc#1 + bcc#2[63]
TiVNbTaCrTC4 alloybcc#1 + bcc#2 + Laves
TiVNbTaZrTC4 alloybcc
TiVNbTaWTC4 alloybcc#1 + bcc#2 + bcc#3
表1  LC-RHEACs的基体合金种类和物相结构[31,36~38,41,42,46~63]
图4  激光熔化沉积和真空电弧熔炼MoNbTa合金的EBSD像[68]
图5  激光熔覆熔池结构示意图和温度梯度(G)、凝固速率(R)与凝固组织晶粒尺寸和形貌之间的关系示意图[60]
图6  LC、高速LC (HLC)和超高速LC (EHLC) TiNbZrTa RHEACs截面不同位置的组织形貌[60]
SystemTreatmentHardnessRef.
TiMoWNbZrAs-cladded700 HV0.5[46]
Annealing1300, 1000, 1050 HV0.5 (800, 1000, 1200 oC for 20 h)
CrTiMoWNbFeAlAs-cladded1050 HV0.2[47]
CrTiMoWNb x Fe1.5AlAs-cladded810, 851, 873, 910 HV0.2 (x = 1.5, 2.0, 2.5, 3.0)[48]
CrTiMoWNb1Fe1.5AlAs-cladded913.5 HV0.2[41]
Annealing923, 954, 822.3 HV0.2 (600, 650, and 800 oC for 4 h)
(TiZrNb)14SnMoAs-cladded551.4 HV0.2[49]
TiTaZrAs-cladded(510 ± 22) HV[50]
TiNbTaZrAs-cladded(550 ± 26) HV[50]
FeCrAlTiMoWNb3As-cladded694 HV0.2[51]
Annealing635, 512, 432 HV0.2 (750, 850, and 950 oC for 4 h)
Annealing432, 494, 639, 614 HV0.2 (950 oC for 4, 6, 8, and 10 h)
NiTiCrNbTa xAs-cladded922.8, 985.1, 851.3, 825.4 HV0.3 (x = 0.1, 0.3, 0.5, 1.0)[52]
AlNbTaZr xAs-cladded594, 596, 611, 624, 654 HV0.5 (x = 0.2, 0.4, 0.6, 0.8, 1.0)[53]
AlTiVMoNbAs-cladded888.5 HV0.2[54]
MoNbTaWAs-cladded753, 980 HV0.5 (with and without ultrasound vibrations)[36]
AlMoNbTaCu xAs-cladded~836, ~568, ~519, ~430 HV0.2 (x = 0, 0.4, 0.6, 0.8)[42]
Al0.2CrTiVNbAs-cladded477, 405 HV0.2 (with dilutions of 3.1% and 31.9%)[55]
AlCoCrMoV xAs-cladded867.7, 832.5, 890.4, 910.9, 925.8, 942.6 HV0.1 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0)[56]
TiMoNbZrAs-cladded410 HV0.1[57]
TiMoNbTaWAs-cladded600 HV[58]
Si3N4 + TiMoNbTaWAs-cladded502.52, 537.34, 628.07 HV0.1 (correspondent to Si3N4 mass fractions of 1.0%, 1.5%, and 2.0%)[59]
TiMoNbZrAs-cladded521.79 HV[38]
TiNiMoNbTaAs-cladded~1000, ~650 HV0.2 (with and without ultrasound vibrations)[37]
TiNbTaZrAs-cladded577.5, 487.8, 545.2 HV0.3 (LC, HLC, EHLC)[60]
Y2O3 + MoNbTaWAs-cladded

1007.5, 1163.9, 1218.5, 1274.6 HV0.3 (correspondent to Y2O3 mass fractions

of 0%, 1%, 2%, and 3%)

[61]
MoNbTaWAs-cladded351, 488, 604, 655 HV0.1 (C1, C2, C3, C3-R*)[31]
TiZrAlNbAs-cladded~530 HV[62]
TiVNbTaAs-cladded372.8 HV0.2[63]
TiVNbTaCrAs-cladded532.4 HV0.2[63]
TiVNbTaZrAs-cladded455.2 HV0.2[63]
TiVNbTaWAs-cladded546.3 HV0.2[63]
表2  LC-RHEACs的显微硬度[31,36~38,41,42,46~63]
CoatingCounterpartWear timeLoadTemperatureWear lossWear rateRef.
minNoCmm3·N·m-1
CrTiMoWNbFeAlGCr1515500.0787 mm3[47]
CrTiMoWNb3Fe1.5AlGCr1515500.045 mm3[47]
CrTiMoWNb1Fe1.5AlGCr1515500.019 mm3[41]
(TiZrNb)14SnMoSi3N415400.368 mm3[49]
FeCrAlTiMoWNb3GCr1515500.630 mm3[51]
AlNbTaZr0.8Si3N4120101.16 × 10-4[53]
MoNbTaWSi3N43010RT1.17 × 10-5[36]
6001.20 × 10-5
8001.25 × 10-5
10001.48 × 10-5
AlMoNbTaCu0.4WC60200.41 mm3[42]
AlCoCrMoV0.8Si3N420500.63 × 10-5[56]
TiMoNbTaWGCr15101.37 × 10-4[58]
TiMoNbTaW-2(Si3N4)GCr1530209.5 × 10-3 mm31.31 × 10-4[59]
TiMoNbZrSi3N45041.2 mg[38]
TiNiMoNbTaGCr1515603.8 × 10-6 mm30.32 × 10-6[37]
MoNbTaW-3(Y2O3)Si3N4305RT3.33 × 10-5[61]
6001.42 × 10-5
8001.08 × 10-5
TiVNbTaSi3N46051.06 mg[63]
TiVNbTaCrSi3N46050.04 mg
TiVNbTaZrSi3N46050.87 mg
TiVNbTaWSi3N46050.06 mg
表3  LC-RHEACs的耐磨性能[36~38,41,42,47,49,51,53,56,58,59,61,63]
图7  CrTiMoWNb x Fe1.5Al涂层和M2基体磨损形貌的SEM像以及磨损体积统计图[48]
图8  TC4基体和AlNbTaZr x RHEACs磨损形貌的SEM像[53]
CoatingSubstrateHEACRef.

Type

Corrosion potential

V

Corrosion current density

A·cm-2

Corrosion potential

V

Corrosion current density

A·cm-2

(TiZrNb)SnMoTC4 alloy-1.153.89 × 10-6-1.01.10 × 10-6[49]
NiTiCrNbTa1.0TC4 alloy-0.2331.63 × 10-7[52]
TiMoNbZrSS 316L-0.7361.002 × 10-5-0.4742.939 × 10-6[57]
TiZrAlNbTC4 alloy-0.38534.53 × 10-8[62]
NbTaTiVTC4 alloy-0.4589.198 × 10-8[63]
NbTaTiVCr-0.3906.262 × 10-8
NbTaTiVZr-0.4182.275 × 10-7
NbTaTiVW-0.3784.294 × 10-8
AlCoCrMoSS 904L-0.1591.14 × 10-4-0.1791.44 × 10-3[56]
AlCoCrMoV-0.1452.80 × 10-5
TiMoNbCrTC4 alloy-0.3972.797 × 10-9-0.2301.722 × 10-10[70]
TiMoNbTa-0.2481.695 × 10-9
TiMoNbZr-0.2771.788 × 10-9
WVTaTi42CrMo-0.77836.466 × 10-6[78]
WVTaTiCr-0.31984.337 × 10-7
表4  LC-RHEACs的耐腐蚀性能[49,52,56,57,62,63,70,78]
图9  Zr0.2和Zr1.0涂层表面的氧化层形貌[53]
1 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys[J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
2 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy[J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722 pmid: 33004516
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
4 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
5 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
6 Nutor R K, Cao Q P, Wang X D, et al. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys[J]. Adv. Eng. Mater., 2020, 22: 2000466
7 Mills L H, Emigh M G, Frey C H, et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy[J]. Acta Mater., 2023, 245: 118618
8 Tseng K K, Juan C C, Tso S, et al. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys[J]. Entropy, 2018, 21: 15
9 Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys[J]. Acta Metall. Sin., 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
9 徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
10 Li T X, Wang S D, Fan W X, et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy[J]. Acta Mater., 2023, 246: 118728
11 Zhang E K, Tang Y, Wen M W, et al. On phase stability of Mo-Nb-Ta-W refractory high entropy alloys[J]. Int. J. Refract. Met. Hard Meter., 2022, 103: 105780
12 El Atwani O, Vo H T, Tunes M A, et al. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments[J]. Nat. Commun., 2023, 14: 2516
doi: 10.1038/s41467-023-38000-y pmid: 37130885
13 Cheng T, Wei G, Jiang S M, et al. Enhanced resistance to helium irradiations through unusual interaction between high-entropy-alloy and helium[J]. Acta Mater., 2023, 248: 118765
14 Ouyang D, Chen Z J, Yu H B, et al. Oxidation behavior of the Ti38V15Nb23Hf24 refractory high-entropy alloy at elevated temperatures[J]. Corros. Sci., 2022, 198: 110153
15 Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility[J]. Nat. Mater., 2020, 19: 1175
16 Gou S Y, Gao M Y, Shi Y Z, et al. Additive manufacturing of ductile refractory high-entropy alloys via phase engineering[J]. Acta Mater., 2023, 248: 118781
17 Liu Y N, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review[J]. J. Manuf. Process., 2021, 66: 341
18 Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surf. Technol., 2020, 49(10): 1
18 张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1
19 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Opt. Laser Technol., 2021, 138: 106915
20 Kumar D. Recent advances in tribology of high entropy alloys: A critical review[J]. Prog. Mater. Sci., 2023, 136: 101106
21 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534
22 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater. Chem. Phys., 2012, 132: 233
23 Snyder J C, Rupp M, Hansen K, et al. Finding density functionals with machine learning[J]. Phys. Rev. Lett., 2012, 108: 253002
24 Mu Y K. Design and fabrication of refractory multicomponent high entropy alloys coating with laser cladding[D]. Kunming: Kunming University of Science and Technology, 2017
24 穆永坤. 激光熔覆难熔多组元高熵合金涂层设计与制备[D]. 昆明: 昆明理工大学, 2017
25 Wen C. Composition design and property optimization of high entropy alloys based on machine learning[D]. Beijing: University of Science and Technology Beijing, 2021
25 文 成. 基于机器学习的高熵合金成分设计与性能优化[D]. 北京: 北京科技大学, 2021
26 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
27 Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J]. Powder Technol., 2020, 367: 724
28 Xia M, Chen Y X, Wang R, et al. Fabrication of spherical MoNbTaWZr refractory high-entropy powders by spray granulation combined with plasma spheroidization[J]. J. Alloys Compd., 2023, 931: 167542
29 Zhang H, Cai J L, Geng J L, et al. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process[J]. Int. J. Refract. Met. Hard Mater., 2023, 112: 106163
30 Shen Z L, Su H J, Liu Y, et al. Laser additive manufacturing of melt-grown Al2O3/GdAlO3 eutectic ceramic composite: Powder designs and crack analysis with thermo-mechanical simulation[J]. J. Eur. Ceram. Soc., 2022, 42: 6583
31 Sun B, Wang Q Q, Chen Y X, et al. Design of heterogeneous structure for enhancing formation quality of laser-manufactured WTaMoNb refractory high-entropy alloy[J]. J. Alloys Compd., 2023, 953: 170066
32 Arrizubieta J I, Martínez S, Lamikiz A, et al. Instantaneous powder flux regulation system for laser metal deposition[J]. J. Manuf. Process., 2017, 29: 242
33 Dobbelstein H, Gurevich E L, George E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Addit. Manuf., 2019, 25: 252
doi: 10.1016/j.addma.2018.10.042
34 Melia M A, Whetten S R, Puckett R, et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Appl. Mater. Today, 2020, 19: 100560
35 Zhao Y, Wu M F, Jiang P C, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. J. Mater. Res. Technol., 2022, 20: 1908
36 Zhao Y, Wu M F, Hou J, et al. Microstructure and high temperature properties of laser cladded WTaNbMo refractory high entropy alloy coating assisted with ultrasound vibration[J]. J. Alloys Compd., 2022, 920: 165888
37 Zhao S, Taheri M, Shirvani K, et al. Microstructure of NbMoTaTiNi refractory high-entropy alloy coating fabricated by ultrasonic field-assisted laser cladding process[J]. Coatings, 2023, 13: 995
38 Gao Q, Liu H, Chen P J, et al. Multi-objective optimization for laser cladding refractory MoNbTiZr high-entropy alloy coating on Ti6Al4V[J]. Opt. Laser Technol., 2023, 161: 109220
39 Goel S, Neikter M, Capek J, et al. Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment[J]. Mater. Des., 2020, 195: 109045
40 Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis[J]. Mater. Des., 2021, 202: 109550
41 Guo Y X, Wang H L, Liu Q B. Microstructure evolution and strengthening mechanism of laser-cladding MoFe x CrTiWAlNb y refractory high-entropy alloy coatings[J]. J. Alloys Compd., 2020, 834: 155147
42 Liu S S, Zhao G L, Wang X H, et al. Design and characterization of AlNbMoTaCu x high entropy alloys laser cladding coatings[J]. Surf. Coat. Technol., 2022, 447: 128832
43 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
44 Wu J X, Li P Y, Dong H F, et al. Research progress in composition design, microstructure and properties of refractory high entropy alloys[J]. J. Aeronaut. Mater., 2022, 42(6): 33
44 武俊霞, 李培友, 董洪峰 等. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33
doi: 10.11868/j.issn.1005-5053.2021.000205
45 Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys[J]. Mater. Rep., 2021, 35: 17064
45 陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35: 17064
46 Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surf. Coat. Technol., 2017, 311: 321
47 Guo Y X, Liu Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102: 78
48 Wang H L, Liu Q B, Guo Y X, et al. MoFe1.5CrTiWAlNb x refractory high-entropy alloy coating fabricated by laser cladding[J]. Intermetallics, 2019, 115: 106613
49 Guo Y X, Li X M, Liu Q B. A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model[J]. Mater. Des., 2020, 196: 109085
50 Guan H T, Chai L J, Wang Y Y, et al. Microstructure and hardness of NbTiZr and NbTaTiZr refractory medium-entropy alloy coatings on Zr alloy by laser cladding[J]. Appl. Surf. Sci., 2021, 549: 149338
51 Kuang S H, Zhou F, Zheng S S, et al. Annealing-induced microstructure and properties evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding[J]. Intermetallics, 2021, 129: 107039
52 Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and properties of NiTiCrNbTa x refractory high-entropy alloy coatings with variable Ta content[J]. J. Alloys Compd., 2022, 891: 161756
53 Zhao P, Li J, Zhang Y, et al. Wear and high-temperature oxidation resistances of AlNbTaZr x high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding[J]. J. Alloys Compd., 2021, 862: 158405
54 Chen L, Wang Y Y, Hao X H, et al. Lightweight refractory high entropy alloy coating by laser cladding on Ti-6Al-4V surface[J]. Vacuum, 2021, 183: 109823
55 Lou L Y, Liu K C, Jia Y J, et al. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding[J]. Surf. Coat. Technol., 2022, 447: 128873
56 Liao T H, Wang Z L, Wu X H, et al. Effect of V on microstructure, wear and corrosion properties in AlCoCrMoV x high entropy alloy coatings by laser cladding[J]. J. Mater. Res. Technol., 2023, 23: 4420
57 Huang Y M, Wang Z Y, Xu Z Z, et al. Microstructure and properties of TiNbZrMo high entropy alloy coating[J]. Mater. Lett., 2021, 285: 129004
58 Ren Z Y, Hu Y L, Tong Y G, et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J]. Tribol. Int., 2023, 182: 108366
59 Hao X H, Liu H X, Zhang X W, et al. Microstructure and wear resistance of in-situ TiN/(Nb, Ti)5Si3 reinforced MoNbTaWTi-based refractory high entropy alloy composite coatings by laser cladding[J]. Appl. Surf. Sci., 2023, 626: 157240
60 Zhou J L, Cheng Y H, Wan Y X, et al. Solidification characteristics and microstructure of TaNbZrTi refractory high entropy coating by extreme high-speed laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106257
61 Wang Y, Li P J, Ma N, et al. Effect of Y2O3 on the microstructure and tribology property of WMoTaNb refractory high entropy alloy coating prepared by laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106273
62 Jiang X J, Wang S Z, Fu H, et al. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding[J]. Mater. Lett., 2022, 308: 131131
63 Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and performance enhancement of NbTaTiV-(Cr, Zr, W) single-phase refractory high-entropy alloy coatings: Role of additional elements[J]. J. Alloys Compd., 2023, 951: 169918
64 Li Q T, Lei Y P, Fu H G, et al. Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs[J]. Rare Met., 2018, 37: 852
65 Cheng W, Ji L F, Zhang L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. J. Mater. Res. Technol., 2023, 24: 7497
66 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
67 Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys[J]. Mater. Des., 2021, 211: 110129
68 Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy[J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105195
69 Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties[J]. Scr. Mater., 2020, 178: 329
70 Liu L, Liu H X, Zhang X W, et al. Corrosion behavior of TiMoNbX (X = Ta, Cr, Zr) refractory high entropy alloy coating prepared by laser cladding based on TC4 titanium alloy[J]. Materials, 2023, 16: 3860
71 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678
72 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy[J]. Mater. Des., 2019, 162: 256
73 Massalski T B, Okamoto H. Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park: ASM International, 1990: 2249
74 Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12: 713
75 Kawamoto M, Okabayashi K. Study of dry sliding wear of cast iron as a function of surface temperature[J]. Wear, 1980, 58: 59
76 Alvi S, Jarzabek D M, Kohan M G, et al. Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering[J]. ACS Appl. Mater. Interfaces, 2020, 12: 21070
77 Rahimi H, Mozaffarinia R, Hojjati Najafabadi A. Corrosion and wear resistance characterization of environmentally friendly sol-gel hybrid nanocomposite coating on AA5083[J]. J. Mater. Sci. Technol., 2013, 29: 603
doi: 10.1016/j.jmst.2013.03.013
78 Xu Z M, Sun Z P, Li C, et al. Effect of Cr on microstructure and properties of WVTaTiCr x refractory high-entropy alloy laser cladding[J]. Materials, 2023, 16: 3060
79 Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: The role of Mo[J]. Int. J. Refract. Met. Hard Mater., 2022, 102: 105721
80 Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys[J]. Corros. Sci., 2019, 159: 108161
81 Liu C Y, Ma Z L, Li H Y, et al. Designing NbTiTa-Cr/Al refractory complex concentrated alloys with balanced strength-ductility-oxidation resistance properties: Insights into oxidation mechanisms[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106308
82 Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metall. Sin., 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
82 李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
83 Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys[J]. Mater. Res. Innov., 2000, 3: 231
[1] 朱满, 张成, 许军锋, 坚增运, 惠增哲. CrNbTiVAl x 难熔高熵合金的组织、力学性能和高温氧化行为[J]. 金属学报, 2025, 61(1): 88-98.
[2] 王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
[3] 徐一斐, 张楠, 许培鑫, 杜博睿, 史华, 王淼辉. 超高速激光原位熔覆Ti(C, B)/Ni60A复合涂层的界面特征与表面磨损机理[J]. 金属学报, 2024, 60(12): 1721-1730.
[4] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[5] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[6] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[7] 赵乃勤, 郭斯源, 张翔, 何春年, 师春生. 基于增强相构型设计的石墨烯/Cu复合材料研究进展[J]. 金属学报, 2021, 57(9): 1087-1106.
[8] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[9] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[10] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[11] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[12] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[13] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[14] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[15] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.