|
|
激光熔覆难熔高熵合金涂层研究进展 |
夏兴川1( ), 张恩宽1, 丁俭1, 王玉江2, 刘永长3 |
1 河北工业大学 材料科学与工程学院 天津 300401 2 中国人民解放军陆军装甲兵学院 装备再制造技术国防科技重点实验室 北京 100072 3 天津大学 材料科学与工程学院 天津 300072 |
|
Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings |
XIA Xingchuan1( ), ZHANG Enkuan1, DING Jian1, WANG Yujiang2, LIU Yongchang3 |
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300401, China 2 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China 3 School of Material Science and Engineering, Tianjin University, Tianjin 300072, China |
引用本文:
夏兴川, 张恩宽, 丁俭, 王玉江, 刘永长. 激光熔覆难熔高熵合金涂层研究进展[J]. 金属学报, 2025, 61(1): 59-76.
Xingchuan XIA,
Enkuan ZHANG,
Jian DING,
Yujiang WANG,
Yongchang LIU.
Research Progress on Laser Cladding of Refractory High-Entropy Alloy Coatings[J]. Acta Metall Sin, 2025, 61(1): 59-76.
1 |
Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys[J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
|
2 |
Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy[J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722
pmid: 33004516
|
3 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
|
4 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18: 1758
|
5 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19: 698
|
6 |
Nutor R K, Cao Q P, Wang X D, et al. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys[J]. Adv. Eng. Mater., 2020, 22: 2000466
|
7 |
Mills L H, Emigh M G, Frey C H, et al. Temperature-dependent tensile behavior of the HfNbTaTiZr multi-principal element alloy[J]. Acta Mater., 2023, 245: 118618
|
8 |
Tseng K K, Juan C C, Tso S, et al. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys[J]. Entropy, 2018, 21: 15
|
9 |
Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys[J]. Acta Metall. Sin., 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
|
9 |
徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58: 257
doi: 10.11900/0412.1961.2021.00286
|
10 |
Li T X, Wang S D, Fan W X, et al. CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy[J]. Acta Mater., 2023, 246: 118728
|
11 |
Zhang E K, Tang Y, Wen M W, et al. On phase stability of Mo-Nb-Ta-W refractory high entropy alloys[J]. Int. J. Refract. Met. Hard Meter., 2022, 103: 105780
|
12 |
El Atwani O, Vo H T, Tunes M A, et al. A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments[J]. Nat. Commun., 2023, 14: 2516
doi: 10.1038/s41467-023-38000-y
pmid: 37130885
|
13 |
Cheng T, Wei G, Jiang S M, et al. Enhanced resistance to helium irradiations through unusual interaction between high-entropy-alloy and helium[J]. Acta Mater., 2023, 248: 118765
|
14 |
Ouyang D, Chen Z J, Yu H B, et al. Oxidation behavior of the Ti38V15Nb23Hf24 refractory high-entropy alloy at elevated temperatures[J]. Corros. Sci., 2022, 198: 110153
|
15 |
Wei S L, Kim S J, Kang J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility[J]. Nat. Mater., 2020, 19: 1175
|
16 |
Gou S Y, Gao M Y, Shi Y Z, et al. Additive manufacturing of ductile refractory high-entropy alloys via phase engineering[J]. Acta Mater., 2023, 248: 118781
|
17 |
Liu Y N, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review[J]. J. Manuf. Process., 2021, 66: 341
|
18 |
Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology[J]. Surf. Technol., 2020, 49(10): 1
|
18 |
张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1
|
19 |
Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review[J]. Opt. Laser Technol., 2021, 138: 106915
|
20 |
Kumar D. Recent advances in tribology of high entropy alloys: A critical review[J]. Prog. Mater. Sci., 2023, 136: 101106
|
21 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys[J]. Adv. Eng. Mater., 2008, 10: 534
|
22 |
Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Mater. Chem. Phys., 2012, 132: 233
|
23 |
Snyder J C, Rupp M, Hansen K, et al. Finding density functionals with machine learning[J]. Phys. Rev. Lett., 2012, 108: 253002
|
24 |
Mu Y K. Design and fabrication of refractory multicomponent high entropy alloys coating with laser cladding[D]. Kunming: Kunming University of Science and Technology, 2017
|
24 |
穆永坤. 激光熔覆难熔多组元高熵合金涂层设计与制备[D]. 昆明: 昆明理工大学, 2017
|
25 |
Wen C. Composition design and property optimization of high entropy alloys based on machine learning[D]. Beijing: University of Science and Technology Beijing, 2021
|
25 |
文 成. 基于机器学习的高熵合金成分设计与性能优化[D]. 北京: 北京科技大学, 2021
|
26 |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases[J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529
pmid: 25739749
|
27 |
Wei M W, Chen S Y, Sun M, et al. Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure[J]. Powder Technol., 2020, 367: 724
|
28 |
Xia M, Chen Y X, Wang R, et al. Fabrication of spherical MoNbTaWZr refractory high-entropy powders by spray granulation combined with plasma spheroidization[J]. J. Alloys Compd., 2023, 931: 167542
|
29 |
Zhang H, Cai J L, Geng J L, et al. Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process[J]. Int. J. Refract. Met. Hard Mater., 2023, 112: 106163
|
30 |
Shen Z L, Su H J, Liu Y, et al. Laser additive manufacturing of melt-grown Al2O3/GdAlO3 eutectic ceramic composite: Powder designs and crack analysis with thermo-mechanical simulation[J]. J. Eur. Ceram. Soc., 2022, 42: 6583
|
31 |
Sun B, Wang Q Q, Chen Y X, et al. Design of heterogeneous structure for enhancing formation quality of laser-manufactured WTaMoNb refractory high-entropy alloy[J]. J. Alloys Compd., 2023, 953: 170066
|
32 |
Arrizubieta J I, Martínez S, Lamikiz A, et al. Instantaneous powder flux regulation system for laser metal deposition[J]. J. Manuf. Process., 2017, 29: 242
|
33 |
Dobbelstein H, Gurevich E L, George E P, et al. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends[J]. Addit. Manuf., 2019, 25: 252
doi: 10.1016/j.addma.2018.10.042
|
34 |
Melia M A, Whetten S R, Puckett R, et al. High-throughput additive manufacturing and characterization of refractory high entropy alloys[J]. Appl. Mater. Today, 2020, 19: 100560
|
35 |
Zhao Y, Wu M F, Jiang P C, et al. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process[J]. J. Mater. Res. Technol., 2022, 20: 1908
|
36 |
Zhao Y, Wu M F, Hou J, et al. Microstructure and high temperature properties of laser cladded WTaNbMo refractory high entropy alloy coating assisted with ultrasound vibration[J]. J. Alloys Compd., 2022, 920: 165888
|
37 |
Zhao S, Taheri M, Shirvani K, et al. Microstructure of NbMoTaTiNi refractory high-entropy alloy coating fabricated by ultrasonic field-assisted laser cladding process[J]. Coatings, 2023, 13: 995
|
38 |
Gao Q, Liu H, Chen P J, et al. Multi-objective optimization for laser cladding refractory MoNbTiZr high-entropy alloy coating on Ti6Al4V[J]. Opt. Laser Technol., 2023, 161: 109220
|
39 |
Goel S, Neikter M, Capek J, et al. Residual stress determination by neutron diffraction in powder bed fusion-built Alloy 718: Influence of process parameters and post-treatment[J]. Mater. Des., 2020, 195: 109045
|
40 |
Marola S, Bosia S, Veltro A, et al. Residual stresses in additively manufactured AlSi10Mg: Raman spectroscopy and X-ray diffraction analysis[J]. Mater. Des., 2021, 202: 109550
|
41 |
Guo Y X, Wang H L, Liu Q B. Microstructure evolution and strengthening mechanism of laser-cladding MoFe x CrTiWAlNb y refractory high-entropy alloy coatings[J]. J. Alloys Compd., 2020, 834: 155147
|
42 |
Liu S S, Zhao G L, Wang X H, et al. Design and characterization of AlNbMoTaCu x high entropy alloys laser cladding coatings[J]. Surf. Coat. Technol., 2022, 447: 128832
|
43 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater., 2017, 122: 448
|
44 |
Wu J X, Li P Y, Dong H F, et al. Research progress in composition design, microstructure and properties of refractory high entropy alloys[J]. J. Aeronaut. Mater., 2022, 42(6): 33
|
44 |
武俊霞, 李培友, 董洪峰 等. 难熔高熵合金成分设计微观组织及性能研究进展[J]. 航空材料学报, 2022, 42(6): 33
doi: 10.11868/j.issn.1005-5053.2021.000205
|
45 |
Chen G, Luo T, Shen S C, et al. Research progress in refractory high-entropy alloys[J]. Mater. Rep., 2021, 35: 17064
|
45 |
陈 刚, 罗 涛, 沈书成 等. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35: 17064
|
46 |
Zhang M N, Zhou X L, Yu X N, et al. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding[J]. Surf. Coat. Technol., 2017, 311: 321
|
47 |
Guo Y X, Liu Q B. MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding[J]. Intermetallics, 2018, 102: 78
|
48 |
Wang H L, Liu Q B, Guo Y X, et al. MoFe1.5CrTiWAlNb x refractory high-entropy alloy coating fabricated by laser cladding[J]. Intermetallics, 2019, 115: 106613
|
49 |
Guo Y X, Li X M, Liu Q B. A novel biomedical high-entropy alloy and its laser-clad coating designed by a cluster-plus-glue-atom model[J]. Mater. Des., 2020, 196: 109085
|
50 |
Guan H T, Chai L J, Wang Y Y, et al. Microstructure and hardness of NbTiZr and NbTaTiZr refractory medium-entropy alloy coatings on Zr alloy by laser cladding[J]. Appl. Surf. Sci., 2021, 549: 149338
|
51 |
Kuang S H, Zhou F, Zheng S S, et al. Annealing-induced microstructure and properties evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding[J]. Intermetallics, 2021, 129: 107039
|
52 |
Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and properties of NiTiCrNbTa x refractory high-entropy alloy coatings with variable Ta content[J]. J. Alloys Compd., 2022, 891: 161756
|
53 |
Zhao P, Li J, Zhang Y, et al. Wear and high-temperature oxidation resistances of AlNbTaZr x high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding[J]. J. Alloys Compd., 2021, 862: 158405
|
54 |
Chen L, Wang Y Y, Hao X H, et al. Lightweight refractory high entropy alloy coating by laser cladding on Ti-6Al-4V surface[J]. Vacuum, 2021, 183: 109823
|
55 |
Lou L Y, Liu K C, Jia Y J, et al. Microstructure and properties of lightweight Al0.2CrNbTiV refractory high entropy alloy coating with different dilutions deposited by high speed laser cladding[J]. Surf. Coat. Technol., 2022, 447: 128873
|
56 |
Liao T H, Wang Z L, Wu X H, et al. Effect of V on microstructure, wear and corrosion properties in AlCoCrMoV x high entropy alloy coatings by laser cladding[J]. J. Mater. Res. Technol., 2023, 23: 4420
|
57 |
Huang Y M, Wang Z Y, Xu Z Z, et al. Microstructure and properties of TiNbZrMo high entropy alloy coating[J]. Mater. Lett., 2021, 285: 129004
|
58 |
Ren Z Y, Hu Y L, Tong Y G, et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy[J]. Tribol. Int., 2023, 182: 108366
|
59 |
Hao X H, Liu H X, Zhang X W, et al. Microstructure and wear resistance of in-situ TiN/(Nb, Ti)5Si3 reinforced MoNbTaWTi-based refractory high entropy alloy composite coatings by laser cladding[J]. Appl. Surf. Sci., 2023, 626: 157240
|
60 |
Zhou J L, Cheng Y H, Wan Y X, et al. Solidification characteristics and microstructure of TaNbZrTi refractory high entropy coating by extreme high-speed laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106257
|
61 |
Wang Y, Li P J, Ma N, et al. Effect of Y2O3 on the microstructure and tribology property of WMoTaNb refractory high entropy alloy coating prepared by laser cladding[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106273
|
62 |
Jiang X J, Wang S Z, Fu H, et al. A novel high-entropy alloy coating on Ti-6Al-4V substrate by laser cladding[J]. Mater. Lett., 2022, 308: 131131
|
63 |
Zhang X R, Cui X F, Jin G, et al. Microstructure evolution and performance enhancement of NbTaTiV-(Cr, Zr, W) single-phase refractory high-entropy alloy coatings: Role of additional elements[J]. J. Alloys Compd., 2023, 951: 169918
|
64 |
Li Q T, Lei Y P, Fu H G, et al. Microstructure and mechanical properties of in situ (Ti, Nb)Cp/Fe-based laser composite coating prepared with different heat inputs[J]. Rare Met., 2018, 37: 852
|
65 |
Cheng W, Ji L F, Zhang L T, et al. Refractory high-entropy alloys fabricated using laser technologies: A concrete review[J]. J. Mater. Res. Technol., 2023, 24: 7497
|
66 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing[J]. Nature, 2022, 608: 62
|
67 |
Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys[J]. Mater. Des., 2021, 211: 110129
|
68 |
Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy[J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105195
|
69 |
Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties[J]. Scr. Mater., 2020, 178: 329
|
70 |
Liu L, Liu H X, Zhang X W, et al. Corrosion behavior of TiMoNbX (X = Ta, Cr, Zr) refractory high entropy alloy coating prepared by laser cladding based on TC4 titanium alloy[J]. Materials, 2023, 16: 3860
|
71 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Adv. Mater., 2017, 29: 1701678
|
72 |
Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy[J]. Mater. Des., 2019, 162: 256
|
73 |
Massalski T B, Okamoto H. Binary Alloy Phase Diagrams[M]. 2nd Ed., Materials Park: ASM International, 1990: 2249
|
74 |
Stein F, Palm M, Sauthoff G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability[J]. Intermetallics, 2004, 12: 713
|
75 |
Kawamoto M, Okabayashi K. Study of dry sliding wear of cast iron as a function of surface temperature[J]. Wear, 1980, 58: 59
|
76 |
Alvi S, Jarzabek D M, Kohan M G, et al. Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering[J]. ACS Appl. Mater. Interfaces, 2020, 12: 21070
|
77 |
Rahimi H, Mozaffarinia R, Hojjati Najafabadi A. Corrosion and wear resistance characterization of environmentally friendly sol-gel hybrid nanocomposite coating on AA5083[J]. J. Mater. Sci. Technol., 2013, 29: 603
doi: 10.1016/j.jmst.2013.03.013
|
78 |
Xu Z M, Sun Z P, Li C, et al. Effect of Cr on microstructure and properties of WVTaTiCr x refractory high-entropy alloy laser cladding[J]. Materials, 2023, 16: 3060
|
79 |
Wu H, Zhang S, Wang Z Y, et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMo x high entropy alloy coating: The role of Mo[J]. Int. J. Refract. Met. Hard Mater., 2022, 102: 105721
|
80 |
Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys[J]. Corros. Sci., 2019, 159: 108161
|
81 |
Liu C Y, Ma Z L, Li H Y, et al. Designing NbTiTa-Cr/Al refractory complex concentrated alloys with balanced strength-ductility-oxidation resistance properties: Insights into oxidation mechanisms[J]. Int. J. Refract. Met. Hard Mater., 2023, 115: 106308
|
82 |
Li T X, Lu Y P, Cao Z Q, et al. Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials[J]. Acta Metall. Sin., 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
|
82 |
李天昕, 卢一平, 曹志强 等. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57: 42
doi: 10.11900/0412.1961.2020.00293
|
83 |
Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys[J]. Mater. Res. Innov., 2000, 3: 231
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|