Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1019-1030    DOI: 10.11900/0412.1961.2017.00437
  本期目录 | 过刊浏览 |
激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为
范丽1,2, 陈海龑1(), 董耀华1,3, 李雪莹1, 董丽华1, 尹衍升1
1 上海海事大学海洋科学与工程学院 上海 2013062
2 南通航运职业技术学院轮机工程系 南通 2260103
3 上海交通大学机械与动力工程学院 上海 200240
Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions
Li FAN1,2, Haiyan CHEN1(), Yaohua DONG1,3, Xueying LI1, Lihua DONG1, Yansheng YIN1
1 College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
2 Department of Marine Engineering, Nantong Shipping College, Nantong 226010, China
3 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. Acta Metall Sin, 2018, 54(7): 1019-1030.

全文: PDF(9560 KB)   HTML
摘要: 

采用激光熔覆方法在30CrMo合金钢表面制备了一种铁基合金耐腐蚀涂层,利用EIS、极化曲线、浸泡腐蚀实验等测试方法,结合XPS研究了该涂层在0.5 mol/L HCl溶液中的腐蚀行为,并与304不锈钢和30CrMo钢进行对比。电化学结果表明,在0.5 mol/L HCl溶液中,与30CrMo钢相比,铁基合金涂层极化曲线出现了明显的钝化区,且具有较低的腐蚀电流密度和较高的自腐蚀电位,熔覆层的耐腐蚀性能显著提高。与304不锈钢相比,铁基合金涂层维钝电流略微变小,钝化区变宽,其耐蚀性与304不锈钢相当。涂层钝化膜主要由Cr2O3、FeCr2O4和MoO3组成,涂层具有优良耐蚀性能的本质原因是复合氧化膜的钝化作用对腐蚀介质产生机械阻隔作用。

关键词 铁基合金涂层激光熔覆电化学腐蚀钝化膜耐蚀性    
Abstract

30CrMo alloy steel has a wide range of applications in the petrochemical industry such as the valve bodies and valve covers of subsea Christmas tree, and oil drilling pipes that working in strong acid environment. Therefore, the methods to improve the corrosion resistance of 30CrMo steel by surface modification techniques have become a hot topic of research. Laser cladding Fe-based coatings are regarded as promising materials, because of their high bonding strength, good hardness and excellent wear and corrosion resistance, and they might replace more expensive Co-based or Ni-based alloys. Additions of Cr, Mo, Y, Co and Ni are benefit to improve the corrosion resistance of Fe-based coatings. However, Cr, Y, Co and Mo are expensive. With consideration of reducing the materials cost, and at the same time maintaining the excellent corrosion resistance, a novel Fe-based alloy without, Y, Co and minor Mo content is synthesized. Therefore, in this study, to improve the corrosion resistance of 30CrMo alloy, the novel synthesized Fe-based powder was prepared on the surface by laser cladding. The microstructure, chemical and phase compositions of the fabricated coating were measured systemically by using a SEM equipment with EDS spectrometer, and XRD. The corrosion behavior of this Fe-based coating in 0.5 mol/L HCl solution were studied by polarization curve and EIS measurements, combined with immersion tests. The passive film formed on the surface of the alloy after immersion in the 0.5 mol/L HCl solution for 3 d was analyzed by XPS. The microstructure is mainly composed of dendrites and interdendritic phases, which are confirmed as austenite γ-Fe phase and the eutectics γ-Fe/M23C6. Similar to 304 stainless steel, the Fe-based alloy coating with a very broad passive region, shows positive corrosion potential and less corrosion current density than that of 30CrMo alloy steel. This indicates that the corrosion resistance of the Fe-based coating is superior to 30CrMo alloy steel, and almost the same as 304 stainless steel. The immersion tests show that the corrosion mechanisms of the coating are the combination of anodic dissolution and passive film protection. As for the eutectic region rich in Cr and Mo, the destruction and corrosion of this area in HCl solution are slowed down due to the passivation of Cr and Mo. The passive film is mainly composed of Cr2O3, FeCr2O4 and MoO3. The main reason for the excellent corrosion resistance of the coating is the mechanical barrier effect of the passivation effect of the high density composite oxide film.

Key wordsFe-based alloy coating    laser cladding    electrochemical corrosion    passivation film    corrosion resistance
收稿日期: 2017-10-20     
ZTFLH:  TG174.44  
基金资助:国家自然科学基金项目No.51609133,中国博士后科学基金项目No.2017M620153,海洋公益性行业科研专项经费项目No.201405013-3和上海海事大学科研基金项目No.20130448
作者简介:

作者简介 范 丽,女,1983年生,博士生

Material C Si Mn P S Cr Mo Ni Fe
Fe-based powder 0.20 1.20 1.50 - - 16.80 2.60 11.50 Bal.
304SS 0.07 0.90 2.00 0.03 0.03 19.00 - 10.00 Bal.
30CrMo 0.30 0.17~0.37 0.40~0.70 <0.025 <0.025 0.80~1.10 0.15~0.25 ≤0.03 Bal.
表1  铁基合金粉末、304不锈钢和30CrMo基体的化学成分
图1  铁基合金粉末的SEM像和粉末粒度分布图
图2  铁基粉末和涂层的XRD谱
图3  涂层的Schaeffler组织图
图4  铁基涂层表面的SEM像和EDS分析
图5  铁基涂层截面的SEM像
图6  铁基涂层、304不锈钢和30CrMo钢在0.5 mol/L HCl溶液中的动电位极化曲线
Material Ecorr / mV icorr / (μAcm-2) Rp / Ω βa / (mVdec-1) βc / (mVdec-1)
Fe-based coating -365.12 78.18 186.68 70.238 64.440
304SS -380.68 112.73 113.16 87.571 44.202
30CrMo -448.90 365.59 71.70 213.810 84.089
表2  铁基涂层、304不锈钢和30CrMo钢在0.5 mol/L HCl溶液中的极化曲线拟合结果
图7  铁基涂层、304不锈钢和30CrMo钢在0.5 mol/L HCl溶液中的EIS
图8  铁基涂层、304不锈钢和30CrMo钢在0.5 mol/L HCl溶液中的EIS拟合采用的等效电路
Material Rs Qdl Rct L RL
Ωcm2 Y0 / (Ω-1cm-2sn) n Ωcm2 Hcm-2 Ωcm2
Fe-based coating 2.438 2.11×10-4 0.9609 519.8 - -
304SS 2.452 2.32×10-4 0.9236 473.2 - -
30CrMo 1.966 3.94×10-5 0.8359 94.8 134.9 73.49
表3  铁基涂层、304不锈钢和30CrMo钢在0.5 mol/L HCl溶液中的电化学阻抗谱拟合数据
图9  铁基涂层表面在0.5 mol/L HCl溶液中浸泡3 d后的XPS全谱及精细谱峰
图10  铁基涂层在0.5 mol/L HCl溶液中浸泡1、3和7 d后的腐蚀形貌和EDS
图11  铁基涂层在0.5 mol/L HCl溶液中浸泡1、3和7 d后的白光干涉腐蚀形貌
[1] Martínez-Cazares G M, Almanza A, Almanza E, et al. Enhanced hardenability and tempering resistance of AISI 4130 steel by Ni addition[J]. Mater. Perform. Charact., 2016, 5: 202
[2] Danaee I, Khomami M N, Attar A A.Corrosion behavior of AISI 4130 steel alloy in ethylene glycol-water mixture in presence of molybdate[J]. Mater. Chem. Phys., 2012, 135: 658
[3] Hutasoit N, Luzin V, Blicblau A, et al.Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue test[J]. Int. J. Fatigue, 2015, 72: 42
[4] Katakam S, Santhanakrishnan S, Dahotre N B.Fe-based amorphous coatings on AISI 4130 structural steel for corrosion resistance[J]. JOM, 2012, 64: 709
[5] Abioye T E, McCartney D G, Clare A T. Laser cladding of Inconel 625 wire for corrosion protection[J]. J. Mater. Process. Technol., 2015, 217: 232
[6] Li Q H, Savalani M M, Zhang Q M, et al.High temperature wear characteristics of TiC composite coatings formed by laser cladding with CNT additives[J]. Surf. Coat. Technol., 2014, 239: 206
[7] Pereira J, Zambrano J, Licausi M, et al. Tribology and high temperature friction wear behavior of MCrAlY laser cladding coatings on stainless steel [J]. Wear, 2015, 330-331: 280
[8] Kusmoko A, Dunne D P, Li H.A Comparative study for wear resistant of Stellite 6 coatings on nickel alloy substrate produced by laser cladding, HVOF and plasma spraying techniques[J]. Int. J. Curr. Eng. Technol., 2014, 4: 32
[9] Pan J, Zhang M, Chen Q, et al.Study of anticorrosion ability of Fe43.7Co7.3Cr14.7Mo12.6C15.5B4.3Y1.9 bulk metallic glass in strong acid solutions[J]. Rare Met. Mater. Eng., 2008, 37(Suppl.4): 805(潘杰, 张猛, 谌祺等. FeCoCrMoCBY块体非晶合金在强酸介质中的耐蚀性能[J]. 稀有金属材料与工程, 2008, 37(增刊4): 805)
[10] Zhou Z, Wang L, Wang F C, et al.Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying[J]. Surf. Coat. Technol., 2009, 204: 563
[11] Fan H B, Zheng W, Wang G Y, et al.Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in sulfuric acid solutions[J]. Metall. Mater. Trans., 2011, 42A: 1524
[12] Liu L, Zhang C.Fe-based amorphous coatings: Structures and properties[J]. Thin Solid Films, 2014, 561: 70
[13] Huang Y J, Guo Y Z, Fan H B, et al.Synthesis of Fe-Cr-Mo-C-B amorphous coating with high corrosion resistance[J]. Mater. Lett., 2012, 89: 229
[14] Wang Y, Zheng Y G, Wang J Q, et al.Passivation behavior of Fe-based amorphous metallic coating in NaCl and H2SO4 solutions[J]. Acta Metall. Sin., 2015, 51: 49(王勇, 郑玉贵, 王建强等. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51: 49)
[15] Long Z L, Chang C T, Ding Y H, et al.Corrosion behavior of Fe-based ferromagnetic (Fe, Ni)-B-Si-Nb bulk glassy alloys in aqueous electrolytes[J]. J. Non-Cryst. Solids, 2008, 354: 4609
[16] Li J W, Yang L J, Ma H R, et al.Improved corrosion resistance of novel Fe-based amorphous alloys[J]. Mater. Des., 2016, 95: 225
[17] Wang W, Zhang C, Xu P, et al.Enhancement of oxidation and wear resistance of Fe-based amorphous coatings by surface modification of feedstock powders[J]. Mater. Des., 2015, 73: 35
[18] Ma H R, Chen X Y, Li J W, et al.Fe-based amorphous coating with high corrosion and wear resistance[J]. Surf. Eng., 2017, 33: 56
[19] Chen Q J, Hu L L, Zhou X L, et al. Effect of corrosive medium on the corrosion resistance of FeCrMoCB amorphous alloy coating [J]. Adv. Mater. Res., 2011, 291-294: 65
[20] Veinthal R, Sergejev F, Zikin A, et al.Abrasive impact wear and surface fatigue wear behaviour of Fe-Cr-C PTA overlays[J]. Wear, 2013, 301: 102
[21] Hou Q Y.Influence of molybdenum on the microstructure and properties of a FeCrBSi alloy coating deposited by plasma transferred arc hardfacing[J]. Surf. Coat. Technol., 2013, 225: 11
[22] Lou M.Microstructure, mechanical properties and wear resistance of Fe-based coating deposited by PTA hardfacing [D]. Changsha: Central South University, 2014(娄明. 等离子堆焊Fe基涂层结构、力学性能和耐磨性的研究 [D]. 长沙: 中南大学, 2014)
[23] Wang Y B.Laser cladding prepare coating with wear resistance and corrosion resistance [D]. Harbin: Harbin Engineering University, 2009(王一博. 激光熔覆制备耐磨耐蚀涂层 [D]. 哈尔滨: 哈尔滨工程大学, 2009)
[24] Sun H Y, Zhou Z J, Wang M, et al.Microstructures and mechanical properties of a new 310 austenitic stainless steel during long term aging[J]. Chin. J. Eng., 2015, 37: 600(孙红英, 周张健, 王曼等. 改进310奥氏体不锈钢长期时效后的组织与性能[J]. 工程科学学报, 2015, 37: 600)
[25] Rojacz H, Zikin A, Mozelt C, et al.High temperature corrosion studies of cermet particle reinforced NiCrBSi hardfacings[J]. Surf. Coat. Technol., 2013, 222: 90
[26] Sun Y Z, Liu S, Li J B, et al.Effect of Fe content on microstructure and properties of laser clad layer[J]. Mater. Rev., 2017, 31(4): 75(孙有政, 刘帅, 李进宝等. 铁含量对激光熔覆层微结构及性能的影响[J]. 材料导报, 2017, 31(4): 75)
[27] Zhang H, Zhang C H, Wang Q, et al.Effect of Ni content on stainless steel fabricated by laser melting deposition[J]. Opt. Laser Technol., 2018, 101: 363
[28] Xu Q G.Study on laser cladding layer of iron based alloy reinforced by ceramic particle [D]. Ji'nan: Shandong University, 2012(徐勤官. 陶瓷颗粒增强铁基合金激光熔覆层的研究 [D]. 济南: 山东大学, 2012)
[29] Jiang C P.The microstructure and properties of Fe-based amorphous coatings fabricated by plasma spraying [D]. Xi'an: Chang'an University, 2015(姜超平. 等离子喷涂铁基非晶涂层结构与性能研究 [D]. 西安: 长安大学, 2015)
[30] Hu Y B, Dong C F, Sun M, et al.Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments[J]. Corros. Sci., 2011, 53: 4159
[31] Cao C N.Principles of electrochemistry of corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press., 2008: 176(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社2008: 176)
[32] Kocijan A, Merl D K, Jenko M.The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride[J]. Corros. Sci., 2011, 53: 776
[33] Ma H R.Fabrication, corrosion and wear properties of Fe-based amorphous coatings [D]. Shanghai: Shanghai University, 2016(马浩然. Fe基非晶涂层的制备及其耐磨防腐性能研究 [D]. 上海: 上海大学, 2016)
[34] Yamashita T, Hayes P.Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl. Surf. Sci., 2008, 254: 2441
[35] Wu Q L, Li W G, Zhong N.Corrosion behavior of TiC particle-reinforced 304 stainless steel[J]. Corros. Sci., 2011, 53: 4258
[36] Lv J L, Luo H Y.Electrochemical investigation of passive film in pre-deformation AISI 304 stainless steels[J]. Appl. Surf. Sci., 2012, 263: 29
[37] Yuan L, Wang H M.Corrosion properties of a Cr13Ni5Si2-based metal silicide alloy[J]. Intermetallics, 2008, 16: 1149
[38] Hu G.Preparation and properties of Ni based and Fe based clad coating using ultrasonic frequency induction cladding [D]. Beijing: University of Science and Technology Beijing, 2015(胡舸. 超音频感应熔覆镍基和铁基涂层制备及性能研究 [D]. 北京: 北京科技大学, 2015)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[3] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[4] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[8] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[9] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[10] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[11] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[12] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[13] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[14] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[15] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.