Please wait a minute...
金属学报  2025, Vol. 61 Issue (1): 43-58    DOI: 10.11900/0412.1961.2024.00191
  综述 本期目录 | 过刊浏览 |
Allvac 718Plus高温合金第二相演变与性能研究进展
唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长()
天津大学 材料科学与工程学院 天津 300354
Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy
TANG Liting, GUO Qianying, LI Chong, DING Ran, LIU Yongchang()
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

唐丽婷, 郭倩颖, 李冲, 丁然, 刘永长. Allvac 718Plus高温合金第二相演变与性能研究进展[J]. 金属学报, 2025, 61(1): 43-58.
Liting TANG, Qianying GUO, Chong LI, Ran DING, Yongchang LIU. Advances in Secondary Phase Evolution and Performance Enhancement of Allvac 718Plus Superalloy[J]. Acta Metall Sin, 2025, 61(1): 43-58.

全文: PDF(3777 KB)   HTML
摘要: 

Allvac 718Plus合金是在Inconel 718合金的基础上通过成分优化研制出的一种新型镍基高温合金,最高服役温度较Inconel 718合金提高约55 ℃,因其具有优异的抗蠕变、抗疲劳性能以及锻造、焊接等加工性能,在制造700 ℃服役部件上具有巨大潜力。作为一种应用时间较短的沉淀强化型高温合金,阐明其热处理过程中的第二相演变规律对于通过热处理调控组织从而优化合金性能具有重要意义。本文主要介绍了合金中的第二相,包括强化相γ′相、晶界相η相,以及在特定条件下析出的γ″相、δ相、σ相和C14 Laves相;分析了Allvac 718Plus合金标准热处理过程中γ′相和η相的析出行为,预固溶处理和直接时效处理的应用,以及长期时效过程中的第二相演变规律,提出复合γ″-γ′结构是实现合金长时服役的策略;结合高温服役过程中第二相的组织演变,分析了2种主要第二相对抗疲劳性能和抗蠕变性能的影响;确定了合金中缓慢的γ′相析出动力学与合金可焊性的匹配性,总结了Laves相和η相对焊接过程中的开裂及应变时效开裂的影响。

关键词 Allvac 718Plus合金第二相热处理高温性能焊接性能    
Abstract

Allvac 718Plus is a newly developed nickel-based superalloy derived from Inconel 718 alloy via composition optimization. Its maximum service temperature is approximately 55 oC higher than that of Inconel 718. With its excellent combination of creep resistance, fatigue resistance, machinability, and weldability, the Allvac 718Plus is highly suitable for manufacturing high-temperature components that can operate at up to 700 oC. As a precipitation-strengthened superalloy that is relatively new with limited application history, understanding the evolution of its secondary phases during heat treatment is crucial for optimizing its properties via microstructure control. In this context, the secondary phases found in Allvac 718Plus are introduced, including the primary strengthening γ′ phase, the main grain-boundary η phase, and the γ″, δ, σ, and C14 Laves phases that form under specific conditions. The precipitation behaviors of the γ′ and η phases during standard heat treatments are examined, along with the effects of presolidification and direct aging treatments. Additionally, the evolution of secondary phases during prolonged thermal exposure are explored. The results demonstrate that the formation of a more stable composite γ″-γ′ structure is a promising strategy to achieve long-term serviceability for the alloy. The influence of the microstructural evolution of secondary phases during high-temperature service on fatigue and creep resistance is also analyzed, focusing on the roles of the two primary secondary phases. Furthermore, this paper highlights the correlation between the sluggish kinetics of γ′ phase precipitation in Allvac 718Plus and its weldability. A comprehensive overview of the harmful effects of the Laves and η phases on cracking during welding and strain-age cracking is also provided.

Key wordsAllvac 718Plus alloy    secondary phase    heat treatment    high-temperature property    weldability
收稿日期: 2024-06-05     
ZTFLH:  TG166.7  
基金资助:国家自然科学基金重点项目(52034004);国家重点研发计划项目(2022YFB3705300)
通讯作者: 刘永长,ycliu@tju.edu.cn,主要从事金属成形与加工研究
Corresponding author: LIU Yongchang, professor, Tel: 13512214280, E-mail: ycliu@tju.edu.cn
作者简介: 唐丽婷,女,1999年生,博士生
PhaseFormulaCrystal structureLattice constant (a, b, c)
γ-fcc (A1)a = 0.377 nm
γ′Ni3(Al, Ti)fcc (L12)a = 0.379 nm
γ″Ni3Nbbct (D022)a = 0.391 nm (c / a = 1.99)
ηNi3Nb0.5(Ti, Al)0.5Hexagonal (D024)a = 0.512 nm, c = 0.836 nm
δNi3NbOrthogonal (D0a)a = 0.514 nm, b = 0.423 nm, c = 0.453 nm
MX(Nb, Ti)(C, N)fcc (B1)a = 0.443-0.444 nm
C14 Laves(Ni, Cr, Fe)2(Nb, Mo, Ti)Hexagonal (D024)a = 0.88 nm, c = 0.45 nm
σ(Fe, Ni)CrTetragonal (D144h)a = 0.49 nm, c = 0.78 nm
表1  Allvac 718Plus高温合金主要相的晶体结构及组成[4,18~22]
图1  Allvac 718Plus合金中主要第二相γ′和η的晶体结构
图2  Allvac 718Plus合金中2种拓扑密堆(TCP)相(σ相和Laves相)的晶体结构[18]
图3  Allvac 718Plus合金中Laves相[34]和σ相的TEM-EDS面扫结果
图4  经1000 ℃、1 h和920 ℃、1 h固溶处理后Allvac 718Plus合金晶界处的粒状η相和导致晶界锯齿化的针状η相[10]
图5  快速凝固Allvac 718Plus合金在960 ℃固溶处理过程中的第二相演变过程[34]
Heat treatmentVicker's hardness / HVEquivalent pressure / GPa
Single aged (788 oC, 4 h, air cooling)466.8 ± 11.84.58 ± 0.12
Double aged (788 oC, 4 h, water cooling + 675 oC, 8 h, air cooling)526.30 ± 11.25.16 ± 0.11
表2  经单级时效和双级时效处理Allvac 718Plus合金的显微硬度和等效的最大压力[46]
State of Allvac 718Plus alloy704 oC760 oC
Rapidly-solidified14.483.2
Forged08.764.4
表3  快速凝固和锻造态Allvac 718Plus合金在704和760 ℃长期时效的γ′相粗化速率[29] (nm3·h-1)
图6  快速凝固Allvac 718Plus合金经长期时效后形成的γ″/γ′复合结构[29]
图7  快速凝固Allvac 718Plus合金经760 ℃、1000 h长期时效后形成的δ、η和σ相[29]
Heat treatmentγ′ sizeVF of σ25 oC704 oC
nm%YS / MPaUTS / MPaEl / %YS / MPaUTS / MPaEl / %
As-cast35.5 ± 6.7-1156.481493.1414.53953.021069.0015.23
704 oC, 100 h35.6 ± 6.8-1247.951614.8214.35987.051124.9016.61
704 oC, 200 h36.5 ± 7.2-1236.301611.2214.44988.901126.0511.57
704 oC, 500 h39.9 ± 7.30.361217.461594.9913.81981.761104.9719.34
704 oC, 1000 h47.5 ± 8.81.971224.041581.4311.78969.421072.5421.09
760 oC, 100 h50.1 ± 8.7-1035.341410.0717.58848.890956.4018.62
760 oC, 200 h53.8 ± 10.61.141014.981384.6713.93806.550927.8224.82
760 oC, 500 h65.7 ± 13.92.630967.701346.9011.38766.010855.3922.93
760 oC, 1000 h83.6 ± 18.83.820855.111236.6807.60748.990874.9030.35
表4  锻造态Allvac 718Plus合金经704和760 ℃长期时效后的组织参数及相应室温和高温拉伸性能[38]
图8  经704 ℃、100 h和760 ℃、1000 h长期时效后锻造态Allvac 718Plus合金的室温和高温(704 ℃)沉淀强化机制[38]
图9  经固溶处理后炉冷至时效温度的锻造态Allvac 718Plus在长期时效过程中γ″/γ′复合结构的演变示意图[28]
1 Du J H, Bi Z N, Qu J L. Recent development of triple melt GH4169 alloy[J]. Acta Metall. Sin., 2023, 59: 1159
doi: 10.11900/0412.1961.2023.00144
1 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59: 1159
doi: 10.11900/0412.1961.2023.00144
2 Zhang J, Wang L, Xie G, et al. Recent progress in research and development of nickel based single crystal superalloys[J]. Acta Metall. Sin., 2023, 59: 1109
2 张 健, 王 莉, 谢 光 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59: 1109
3 Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents[J]. Acta Metall. Sin., 2020, 56: 21
doi: 10.11900/0412.1961.2019.00137
3 吴 静, 刘永长, 李 冲 等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56: 21
4 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy[J]. Acta Metall. Sin., 2016, 52: 1259
4 刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展[J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
5 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency[J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
5 刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
6 Du J H, Lv X D, Dong J X, et al. Research progress of wrought superalloys in China[J]. Acta Metall. Sin., 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
6 杜金辉, 吕旭东, 董建新 等. 国内变形高温合金研制进展[J]. 金属学报, 2019, 55: 1115
doi: 10.11900/0412.1961.2019.00142
7 Qiao Z, Li C, Zhang H J, et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations[J]. Int. J. Min. Met. Mater., 2020, 27: 1123
doi: 10.1007/s12613-019-1949-8
8 Wu Y T, Li C, Xia X C, et al. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ'- strengthened superalloys[J]. J. Mater. Sci. Technol., 2021, 67: 95
9 Qi Q Q, Zhang H J, Liu C X, et al. On the microstructure evolution during low cycle fatigue deformation of wrought ATI 718Plus alloy[J]. Mater. Sci. Eng., 2020, A798: 140132
10 Tang L T, Zhang H Y, Guo Q Y, et al. The precipitation of η phase during the solution treatments of Allvac 718Plus[J]. Mater. Charact., 2021, 176: 111142
11 Li L H, Dong J X, Zhang M C, et al. Integrated simulation of the forging process for GH4738 alloy turbine disk and its application[J]. Acta Metall. Sin., 2014, 50: 821
doi: 10.3724/SP.J.1037.2013.00675
11 李林翰, 董建新, 张麦仓 等. GH4738合金涡轮盘锻造过程的集成式模拟及应用[J]. 金属学报, 2014, 50: 821
doi: 10.3724/SP.J.1037.2013.00675
12 Li J, Wu Y T, Liu Y C, et al. Enhancing tensile properties of wrought Ni-based superalloy ATI 718Plus at elevated temperature via morphology control of η phase[J]. Mater. Charact., 2020, 169: 110547
13 Guo Q Y, Ji K K, Zhang T, et al. Precipitates evolution and tensile behavior of wrought Ni-based ATI 718Plus superalloy during long-term thermal exposure[J]. Sci. China Technol. Sci., 2022, 65: 1283
14 Wang M Q, Deng Q, Du J H, et al. Research progress of alloy ATI 718Plus in China[J]. Rare Met. Mater. Eng., 2016, 45: 3335
14 王民庆, 邓 群, 杜金辉 等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45: 3335
15 Kumar K S, Hazzledine P M. Polytypic transformations in Laves phases[J]. Intermetallics, 2004, 12: 763
16 Asala G, Khan A K, Andersson J, et al. Microstructural analyses of ATI 718Plus® produced by wire-ARC additive manufacturing process[J]. Metall. Mater. Trans., 2017, 48A: 4211
17 Chen Y H, Yang C L, Fan C L, et al. The influence of solution temperature on microstructure evolution and mechanical properties of ATI 718Plus repaired by wire and arc additive manufacturing[J]. Mater. Sci. Eng., 2022, A852: 143641
18 Krakow R, Johnstone D N, Eggeman A S, et al. On the crystallography and composition of topologically close-packed phases in ATI 718Plus® [J]. Acta Mater., 2017, 130: 271
19 Pickering E J, Mathur H, Bhowmik A, et al. Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater., 2012, 60: 2757
20 Eurich N C, Bristowe P D. Thermodynamic stability and electronic structure of η-Ni6Nb(Al, Ti) from first principles[J]. Scr. Mater., 2014, 77: 37
21 Shen Y, Wang M Q, Xia H, et al. Pseudobinary phase diagrams of eutectic reaction for Pt-containing and Pt-free 718Plus alloys[J]. Adv. Eng. Mater., 2021, 23: 2001233
22 Hosseini S A, Abbasi S M, Madar K Z, et al. The effect of boron and zirconium on wrought structure and γ-γ′ lattice misfit characterization in nickel-based superalloy ATI 718Plus[J]. Mater. Chem. Phys., 2018, 211: 302
23 Srinivasan D, Lawless L U, Ott E A. Experimental determination of TTT diagram for alloy 718Plus®[A]. Superalloys 2012[M]. Seven Springs: TMS, 2012: 759
24 Wang M Q, Tian C G, Nan Y, et al. A review on 718Plus, the new superalloy: Performance, aerospace application and development trend[J]. Mater. Rev., 2017, 31(19): 72
24 王妙全, 田成刚, 南 洋 等. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 材料导报, 2017, 31(19): 72
25 Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Mater. Sci. Eng., 2016, A677: 515
26 Hausmann D, Förner A, Pröbstle M, et al. Correlation between local chemical composition and formation of different types of ordered phases in the polycrystalline nickel-base superalloy A718Plus[J]. Adv. Eng. Mater., 2021, 23: 2100558
27 Asala G, Andersson J, Ojo O A. Precipitation behavior of γ′ precipitates in the fusion zone of TIG welded ATI 718Plus® [J]. Int. J. Adv. Manuf. Technol., 2016, 87: 2721
28 Guo Q Y, Ma Z Q, Qiao Z X, et al. A new type-γ′/γ′′ coprecipitation behavior and its evolution mechanism in wrought Ni-based ATI 718Plus superalloy[J]. J. Mater. Sci. Technol., 2022, 119: 98
29 Tang L T, Guo Q Y, Li C, et al. Precipitation behaviors of the rapidly-solidified Allvac 718Plus superalloy during aging treatment[J]. Mater. Charact., 2023, 200: 112856
30 Xie X S, Wang G L, Dong J X, et al. Structure stability study on a newly developed nickel-base superalloy-Allvac® 718Plus™[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 179
31 Wang M Q, Du J H, Deng Q, et al. Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. J. Alloys Compd., 2017, 701: 635
32 Casanova A, Martín-Piris N, Hardy M, et al. Evolution of secondary phases in alloy ATI 718Plus® during processing[A]. Proceedings of MATEC Web of Conferences[C]. Paris: EDP Sciences, 2014: 09003
33 Messé O M, Barnard J S, Pickering E J, et al. On the precipitation of delta phase in ALLVAC® 718Plus[J]. Philos. Mag., 2014, 94: 1132
34 Tang L T, Guo Q Y, Li C, et al. Precipitation sequences in rapidly solidified Allvac 718Plus alloy during solution treatment[J]. J. Mater. Sci. Technol., 2022, 128: 180
doi: 10.1016/j.jmst.2022.03.031
35 Asala G, Andersson J, Ojo O A. Improved dynamic impact behaviour of wire-arc additive manufactured ATI 718Plus® [J]. Mater. Sci. Eng., 2018, A738: 111
36 Andersson J, Sjöberg G, Viskari L, et al. Hot cracking of Allvac 718Plus, Alloy 718 and Waspaloy at varestraint testing[A]. Proceedings of the 47th Conference of Metallurgists (COM)[C]. Winnipeg: Springer, 2008: 401
37 Kruk A, Cempura G. Application of analytical electron microscopy and FIB-SEM tomographic technique for phase analysis in as-cast Allvac 718Plus superalloy[J]. Int. J. Mater. Res., 2019, 110: 3
38 Tang L T, Guo Q Y, Li C, et al. Precipitation and tensile behaviors of Allvac 718Plus superalloy during long-term thermal exposure[J]. Mater. Sci. Eng., 2024, A896: 146221
39 Wang M Q, Deng Q, Du J H, et al. The effect of Aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater. Trans., 2015, 56: 635
40 Kumari G, Boehlert C, Sankaran S, et al. The effects of solutionizing temperature on the microstructure of Allvac 718Plus[J]. J. Mater. Eng. Perform., 2020, 29: 3523
doi: 10.1007/s11665-020-04687-z
41 Wang M Q, Deng Q, Du J H, et al. The influence of Δ phase on mechanical properties of ATI 718Plus alloy[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. Pittsburgh: TMS, 2014: 769
42 Lech S, Wusatowska-Sarnek A M, Wieczerzak K, et al. Evolution of microstructure and mechanical properties of ATI 718Plus® superalloy after graded solution treatment[J]. Metall. Mater. Trans., 2023, 54: 2011
43 Whitmore L, Ahmadi M R, Guetaz L, et al. The microstructure of heat-treated nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, A610: 39
44 Li J, Ding R, Guo Q Y, et al. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI 718Plus[J]. Mater. Sci. Eng., 2021, A812: 141113
45 Whitmore L, Ahmadi M R, Stockinger M, et al. Microstructural investigation of thermally aged nickel-based superalloy 718Plus[J]. Mater. Sci. Eng., 2014, A594: 253
46 Whitmore L, Leitner H, Povoden-Karadeniz E, et al. Transmission electron microscopy of single and double aged 718Plus superalloy[J]. Mater. Sci. Eng., 2012, A534: 413
47 Cao W D, Kennedy R L. Application of direct aging to Allvac® 718Plus™ alloy for improved performance[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 213
48 Lech S, Kruk A, Cempura G, et al. Influence of high-temperature exposure on the microstructure of ATI 718Plus superalloy studied by electron microscopy and tomography techniques[J]. J. Mater. Eng. Perform., 2020, 29: 1453
49 Hörnqvist M, Viskari L. Reduced dwell-fatigue resistance in a Ni-base superalloy after short-term thermal exposure[J]. Metall. Mater. Trans., 2014, 45A: 2699
50 Pröbstle M, Neumeier S, Hünert D, et al. Tensile and creep strength of thermally exposed allvac 718Plus[A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives[C]. Pittsburgh: TMS, 2014: 349
51 Kearsey R M, Tsang J, Oppenheimer S, et al. Microstructural effects on the mechanical properties of ATI 718Plus® alloy[J]. JOM, 2012, 64: 241
52 Tsang J, Kearsey R M, Au P, et al. Effect of composition and microstructure on the fatigue and creep-fatigue behaviour of Allvac 718Plus alloy[J]. Mater. High Temp., 2010, 27: 79
53 Liu X B, Xu J, Barbero E, et al. Effect of thermal treatment on the fatigue crack propagation behavior of a new Ni-base superalloy[J]. Mater. Sci. Eng., 2008, A474: 30
54 Cao W D. Thermal stability characterization of Ni-base ATI 718Plus® superalloy[A]. Superalloys 2008[M]. Pittsburgh: TMS, 2008: 789
55 Dash B B, Dixit S, Boehlert C J, et al. Influence of interrupted ageing on the temporal evolution of the γ′ size distribution and the co-precipitation of γ″ in alloy 718Plus[J]. Mater. Charact., 2023, 206: 113394
56 Guo J T. The effect of aluminium and titanium on the microstructure and mechanical properties of an iron-base alloy[J]. Acta. Metall. Sin., 1978, 14: 227
56 郭建亭. 铝和钛对一种35镍15铬型铁基高温合金组织结构和力学性能的影响[J]. 金属学报, 1978, 14: 227
57 Viskari L, Cao Y, Norell M, et al. Grain boundary microstructure and fatigue crack growth in Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2011, A528: 2570
58 Wang M, Du J, Deng Q, et al. The effect of grain size on the dwell fatigue crack growth rate of alloy ATI 718Plus®[A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. Cham: Springer, 2018: 817
59 Kirchmayer A, Pröbstle M, Huenert D, et al. Influence of grain size and volume fraction of η/δ precipitates on the dwell fatigue crack propagation rate and creep resistance of the nickel-base superalloy ATI 718Plus[J]. Metall. Mater. Trans., 2023, 54A: 2219
60 Liu X B, Xu J, Deem N, et al. Effect of thermal-mechanical treatment on the fatigue crack propagation behavior of newly developed Allvac® 718PlusTM alloy[A]. Superalloys 718, 625, 706 and Derivatives 2005[M]. Pittsburgh: TMS, 2005: 233
61 Tsang J, Kearsey R M, Au P, et al. Microstructural study of fatigue and dwell fatigue crack growth behaviour of ATI 718Plus alloy[J]. Can. Metall. Q., 2011, 50: 222
62 Kattoura M, Mannava S R, Qian D, et al. Effect of ultrasonic nanocrystal surface modification on elevated temperature residual stress, microstructure, and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2018, 110: 186
63 Kattoura M, Telang A, Mannava S R, et al. Effect of ultrasonic nanocrystal surface modification on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Mater. Sci. Eng., 2018, A711: 364
64 Kattoura M, Mannava S R, Qian D, et al. Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2017, 104: 366
65 Kattoura M, Mannava S R, Qian D, et al. Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy[J]. Int. J. Fatigue, 2017, 102: 121
66 Zrník J, Strunz P, Horňák P, et al. Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS[J]. Appl. Phys., 2002, 74A: s1155
67 Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy[J]. Mater. Sci. Eng., 2018, A738: 308
68 Hayes R W, Unocic R R, Nasrollahzadeh M. Creep deformation of Allvac 718Plus[J]. Metall. Mater. Trans., 2015, 46A: 218
69 Barba D, Pedrazzini S, Vilalta-Clemente A, et al. On the composition of microtwins in a single crystal nickel-based superalloy[J]. Scr. Mater., 2017, 127: 37
70 Unocic R R, Zhou N, Kovarik L, et al. Dislocation decorrelation and relationship to deformation microtwins during creep of a gamma' precipitate strengthened Ni-based superalloy[J]. Acta Mater., 2011, 59: 7325
71 Alabbad B, Tin S. Effect of grain boundary misorientation on η phase precipitation in Ni-base superalloy 718Plus[J]. Mater. Charact., 2019, 151: 53
doi: 10.1016/j.matchar.2019.02.038
72 Hassan B, Corney J. Grain boundary precipitation in Inconel 718 and ATI 718Plus[J]. Mater. Sci. Technol., 2017, 33: 1879
73 Unocic K A, Hayes R W, Mills M J, et al. Microstructural features leading to enhanced resistance to grain boundary creep cracking in Allvac 718Plus[J]. Metall. Mater. Trans., 2010, 41A: 409
74 Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants[J]. Scr. Mater., 2019, 164: 66
75 Huang C A, Wang T H, Lee C H, et al. A study of the heat-affected zone (HAZ) of an Inconel 718 sheet welded with electron-beam welding (EBW)[J]. Mater. Sci. Eng., 2005, A398: 275
76 Asala G, Ojo O A. On post-weld heat treatment cracking in tig welded superalloy ATI 718Plus[J]. Results Phys., 2016, 6: 196
77 Andersson J, Sjöberg G P. Repair welding of wrought superalloys: Alloy 718, Allvac 718Plus and Waspaloy[J]. Sci. Technol. Weld. Joining, 2012, 17: 49
78 Devendranath Ramkumar K, Sridhar R, Periwal S, et al. Investigations on the structure-property relationships of electron beam welded Inconel 625 and UNS 32205[J]. Mater. Des., 2015, 68: 158
79 Koleva E G, Mladenov G M, Trushnikov D N, et al. Signal emitted from plasma during electron-beam welding with deflection oscillations of the beam[J]. J. Mater. Process. Technol., 2014, 214: 1812
80 Vishwakarma K R, Richards N L, Chaturvedi M C. Microstructural analysis of fusion and heat affected zones in electron beam welded Allvac® 718PlusTM superalloy[J]. Mater. Sci. Eng., 2008, A480: 517
81 Idowu O A. Heat affected zone cracking of Allvac 718Plus superalloy during high power beam welding and post-weld heat treatment[D]. Winnipeg: The University of Manitoba, 2010
82 Singh S, Fransson W, Andersson J, et al. Varestraint weldability testing of ATI 718Plus®-influence of eta phase[A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. New York: Springer, 2018: 929
83 Mei Y P, Liu Y C, Liu C X, et al. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J]. Mater. Des., 2016, 89: 964
84 Singh S, Andersson J. Varestraint weldability testing of cast ATI® 718Plus™: A comparison to cast alloy 718[J]. Weld World, 2019, 63: 389
85 Hanning F, Khan A K, Andersson J, et al. Advanced microstructural characterisation of cast ATI 718Plus®-effect of homogenisation heat treatments on secondary phases and repair welding behaviour[J]. Weld World, 2020, 64: 523
doi: 10.1007/s40194-020-00851-0
86 Hanning F, Andersson J. The influence of base metal microstructure on weld cracking in manually GTA repair welded cast ATI 718Plus® [A]. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications[C]. Cham: Springer, 2018: 917
87 Andersson J, Sjöberg G, Larsson J. Investigation of homogenization and its influence on the repair welding of cast Allvac 718Plus(®)[A]. Superalloy 718 and Derivatives[M]. Pittsburgh: TMS, 2010: 439
88 Andersson J, Sjöberg G, Hänninen H. Metallurgical response of electron beam welded Allvac® 718Plus™[A]. Hot Cracking Phenomena in Welds III[M]. Berlin, Heidelberg: Springer, 2011: 415
89 Idowu O A, Ojo O A, Chaturvedi M C. Crack-free electron beam welding of Allvac 718Plus®superalloy[J]. Weld. J., 2009, 88: 179S
[1] 赵亚楠, 郭乾应, 刘晨曦, 马宗青, 刘永长. 后续热处理对激光3D打印GH4099合金微观组织和高温力学性能的影响[J]. 金属学报, 2025, 61(1): 165-176.
[2] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[3] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[4] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[7] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[8] 田晓生, 卢正冠, 徐磊, 吴杰, 杨锐. 粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除[J]. 金属学报, 2024, 60(11): 1487-1498.
[9] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[10] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[14] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[15] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.