|
|
退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响 |
张星星1( ), LUTZ Andreas2, 甘为民3, MAAWAD Emad3, KRIELE Armin4 |
1 中国科学院高能物理研究所 多学科研究中心 北京 100049 2 Mercedes Benz AG, Research and Development Department, Leibnizstr. 2, 71032 Böblingen, Germany 3 Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany 4 German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, 85748 Garching, Germany |
|
Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy |
ZHANG Xingxing1( ), LUTZ Andreas2, GAN Weimin3, MAAWAD Emad3, KRIELE Armin4 |
1 Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2 Mercedes Benz AG, Research and Development Department, Leibnizstr. 2, 71032 Böblingen, Germany 3 Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany 4 German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, 85748 Garching, Germany |
引用本文:
张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
Xingxing ZHANG,
Andreas LUTZ,
Weimin GAN,
Emad MAAWAD,
Armin KRIELE.
Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. Acta Metall Sin, 2024, 60(8): 1091-1099.
1 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater Sci., 2019, 106: 100578
|
2 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
|
3 |
Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
|
4 |
Zhao L, Macías J G S, Dolimont A, et al. Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing [J]. Addit. Manuf., 2020, 36: 101499
|
5 |
Schröder J, Evans A, Mishurova T, et al. Diffraction-based residual stress characterization in laser additive manufacturing of metals [J]. Metals, 2021, 11: 1830
|
6 |
Fang Z C, Wu Z L, Huang C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts [J]. Opt. Laser Technol., 2020, 129: 106283
|
7 |
Laleh M, Sadeghi E, Revilla R I, et al. Heat treatment for metal additive manufacturing [J]. Prog. Mater Sci., 2023, 133: 101051
|
8 |
Huang N, Luo Q X, Bartles D L, et al. Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion [J]. Mater. Sci. Eng., 2024, A895: 146228
|
9 |
Takata N, Kodaira H, Sekizawa K, et al. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments [J]. Mater. Sci. Eng., 2017, A704: 218
|
10 |
Chen S Q, Tan Q Y, Gao W Q, et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg [J]. Mater. Sci. Eng., 2022, A858: 144130
|
11 |
Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg [J]. Int. J. Fatigue, 2018, 116: 513
|
12 |
Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 2794
|
13 |
Xie Q G, Lian J H, Sidor J J, et al. Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy [J]. Acta Mater., 2020, 193: 138
|
14 |
Zhang X X, Lutz A, Andrä H, et al. Evolution of microscopic strains, stresses, and dislocation density during in-situ tensile loading of additively manufactured AlSi10Mg alloy [J]. Int. J. Plast., 2021, 139: 102946
|
15 |
Takata N, Liu M L, Hirata M, et al. Microstructural origins of high strength of Al-Si alloy manufactured by laser powder bed fusion: In-situ synchrotron radiation X-ray diffraction approach [J]. J. Mater. Sci. Technol., 2024, 178: 80
|
16 |
Li C, Zhang W X, Yang H O, et al. Microstructural origin of high strength and high strain hardening capability of a laser powder bed fused AlSi10Mg alloy [J]. J. Mater. Sci. Technol., 2024, 197: 194
|
17 |
Hong Y Y, Gao J, Liu X Q, et al. Investigation of the high-temperature fatigue mechanism related to altered local short-range order in AL6XN austenitic stainless steel [J]. Mater. Des., 2023, 236: 112504
|
18 |
Masumura T, Inami K, Matsuda K, et al. Quantitative evaluation of dislocation density in as-quenched martensite with tetragonality by X-ray line profile analysis in a medium-carbon steel [J]. Acta Mater., 2022, 234: 118052
|
19 |
Ribárik G, Jóni B, Ungár T. Global optimum of microstructure parameters in the CMWP line-profile-analysis method by combining Marquardt-Levenberg and Monte-Carlo procedures [J]. J. Mater. Sci. Technol., 2019, 35: 1508
doi: 10.1016/j.jmst.2019.01.014
|
20 |
Zhang X X, Bauer P P, Lutz A, et al. Microplasticity and macroplasticity behavior of additively manufactured Al-Mg-Sc-Zr alloys: In-situ experiment and modeling [J]. Int. J. Plast., 2023, 166: 103659
|
21 |
Zhang X X, Lutz A, Andrä H, et al. An additively manufactured and direct-aged AlSi3.5Mg2.5 alloy with superior strength and ductility: Micromechanical mechanisms [J]. Int. J. Plast., 2021, 146: 103083
|
22 |
Li Y, Yu J Y, Li S L, et al. The influence of post-aging treatment on the microstructure and micromechanical behaviors of additively manufactured maraging steel investigated by in situ high-energy X-ray diffraction [J]. J. Mater. Sci. Technol., 2024, 200: 1
|
23 |
Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
|
24 |
Harjo S, Tsuchida N, Abe J, et al. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction [J]. Sci. Rep., 2017, 7: 15149
doi: 10.1038/s41598-017-15252-5
pmid: 29123143
|
25 |
Zhang X X, Lutz A, Andrä H, et al. Strain hardening behavior of additively manufactured and annealed AlSi3.5Mg2.5 alloy [J]. J. Alloys Compd., 2022, 898: 162890
|
26 |
Santos Macías J G, Douillard T, Zhao L, et al. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg [J]. Acta Mater., 2020, 201: 231
|
27 |
Dan C Y, Cui Y C, Wu Y, et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing [J]. Nat. Mater., 2023, 22: 1182
doi: 10.1038/s41563-023-01651-9
pmid: 37592031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|