Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1091-1099    DOI: 10.11900/0412.1961.2024.00116
  研究论文 本期目录 | 过刊浏览 |
退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响
张星星1(), LUTZ Andreas2, 甘为民3, MAAWAD Emad3, KRIELE Armin4
1 中国科学院高能物理研究所 多学科研究中心 北京 100049
2 Mercedes Benz AG, Research and Development Department, Leibnizstr. 2, 71032 Böblingen, Germany
3 Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
4 German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, 85748 Garching, Germany
Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy
ZHANG Xingxing1(), LUTZ Andreas2, GAN Weimin3, MAAWAD Emad3, KRIELE Armin4
1 Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2 Mercedes Benz AG, Research and Development Department, Leibnizstr. 2, 71032 Böblingen, Germany
3 Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
4 German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, 85748 Garching, Germany
引用本文:

张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
Xingxing ZHANG, Andreas LUTZ, Weimin GAN, Emad MAAWAD, Armin KRIELE. Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. Acta Metall Sin, 2024, 60(8): 1091-1099.

全文: PDF(2507 KB)   HTML
摘要: 

增材制造AlSi10Mg合金存在显著的残余应力,对零件的形状尺寸精度、服役安全性和抗腐蚀性能等产生不利影响。在实际应用中,对残余应力敏感的应用需采用去应力退火以消除残余应力。然而,目前对增材制造AlSi10Mg合金退火后力学特性的理解还停留在宏观层面。为了更深入地揭示其微观力学行为与内在机制,本工作利用同步辐射X射线衍射技术,对合金进行原位变形研究,分析Al和Si相的晶格应变应力演化,明确各物相对合金加工硬化率的具体贡献,并对位错密度的演变进行了量化分析,从而阐明了退火热处理对增材制造AlSi10Mg合金载荷传递行为与位错行为的影响。

关键词 同步辐射X射线衍射原位变形增材制造AlSi10Mg合金热处理    
Abstract

The additively manufactured AlSi10Mg alloy demonstrates considerable residual stresses, adversely affecting the dimensional accuracy, operational safety, and corrosion resistance of the parts. In practical applications, stress relief annealing is necessary to eliminate residual stresses in residual stress-sensitive applications. However, the current understanding of the mechanical properties of the additively manufactured AlSi10Mg alloy after annealing is still limited to the macroscopic level. To further investigate the micromechanical behavior and intrinsic mechanisms of the alloy, this study employed synchrotron X-ray diffraction technology to conduct in situ deformation analysis. This study thoroughly examined the lattice strain and stress evolutions of the Al and Si phases and clarified the individual contribution of each phase to the strain hardening rate of the alloy. In addition, this study quantitatively assessed the evolution of dislocation density and elucidated the influences of annealing heat treatment on the load transfer and dislocation behavior of the additively manufactured AlSi10Mg alloy.

Key wordssynchrotron X-ray diffraction    in situ deformation    additive manufacturing    AlSi10Mg alloy    heat treatment
收稿日期: 2024-04-23     
ZTFLH:  TB146.2  
基金资助:国家重点研发计划项目(2023YFA1609202);DESY PETRA III同步辐射机时项目(H-20010018)
通讯作者: 张星星,xxzhang@ihep.ac.cn,主要从事金属材料的大科学装置表征与计算模拟研究
Corresponding author: ZHANG Xingxing, associate professor, Tel: (010)88233581, E-mail: xxzhang@ihep.ac.cn
作者简介: 张星星,男,1984年生,副研究员,博士
图1  原位变形实验试样尺寸
图2  打印态和退火态试样的宏观力学行为
图3  打印态试样和退火态试样显微组织的SEM像
图4  打印态和退火态试样Al基体和Si相的{hkl}晶格应变演化
SampleDirectionAl{111}Al{200}Al{220}Al{311}Si{111}Si{220}Si{311}Si{422}
As-builtLD16.8615.5820.1120.57182.732467.52209.37308.45
TD49.8024.8815.7426.65141.621574.93295.66281.45
AnnealedLD29.4030.4014.5126.1983.852019.93105.5097.65
TD51.0434.3614.3734.3695.04568.6776.9195.85
表1  变形过程中晶格应变的最大误差 (10-6)
图5  打印态退火态样品Al基体和Si相的不同{hkl}晶格的应力演化
图6  打印态和退火态合金中Al基体的位错密度演化
图7  Al和Si两相对合金加工硬化率的贡献(这里重新绘制了图2b中的合金数据用于对比)
1 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater Sci., 2019, 106: 100578
2 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
3 Fiocchi J, Tuissi A, Biffi C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review [J]. Mater. Des., 2021, 204: 109651
4 Zhao L, Macías J G S, Dolimont A, et al. Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing [J]. Addit. Manuf., 2020, 36: 101499
5 Schröder J, Evans A, Mishurova T, et al. Diffraction-based residual stress characterization in laser additive manufacturing of metals [J]. Metals, 2021, 11: 1830
6 Fang Z C, Wu Z L, Huang C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts [J]. Opt. Laser Technol., 2020, 129: 106283
7 Laleh M, Sadeghi E, Revilla R I, et al. Heat treatment for metal additive manufacturing [J]. Prog. Mater Sci., 2023, 133: 101051
8 Huang N, Luo Q X, Bartles D L, et al. Effect of heat treatment on microstructure and mechanical properties of AlSi10Mg fabricated using laser powder bed fusion [J]. Mater. Sci. Eng., 2024, A895: 146228
9 Takata N, Kodaira H, Sekizawa K, et al. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments [J]. Mater. Sci. Eng., 2017, A704: 218
10 Chen S Q, Tan Q Y, Gao W Q, et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg [J]. Mater. Sci. Eng., 2022, A858: 144130
11 Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg [J]. Int. J. Fatigue, 2018, 116: 513
12 Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 2794
13 Xie Q G, Lian J H, Sidor J J, et al. Crystallographic orientation and spatially resolved damage in a dispersion-hardened Al alloy [J]. Acta Mater., 2020, 193: 138
14 Zhang X X, Lutz A, Andrä H, et al. Evolution of microscopic strains, stresses, and dislocation density during in-situ tensile loading of additively manufactured AlSi10Mg alloy [J]. Int. J. Plast., 2021, 139: 102946
15 Takata N, Liu M L, Hirata M, et al. Microstructural origins of high strength of Al-Si alloy manufactured by laser powder bed fusion: In-situ synchrotron radiation X-ray diffraction approach [J]. J. Mater. Sci. Technol., 2024, 178: 80
16 Li C, Zhang W X, Yang H O, et al. Microstructural origin of high strength and high strain hardening capability of a laser powder bed fused AlSi10Mg alloy [J]. J. Mater. Sci. Technol., 2024, 197: 194
17 Hong Y Y, Gao J, Liu X Q, et al. Investigation of the high-temperature fatigue mechanism related to altered local short-range order in AL6XN austenitic stainless steel [J]. Mater. Des., 2023, 236: 112504
18 Masumura T, Inami K, Matsuda K, et al. Quantitative evaluation of dislocation density in as-quenched martensite with tetragonality by X-ray line profile analysis in a medium-carbon steel [J]. Acta Mater., 2022, 234: 118052
19 Ribárik G, Jóni B, Ungár T. Global optimum of microstructure parameters in the CMWP line-profile-analysis method by combining Marquardt-Levenberg and Monte-Carlo procedures [J]. J. Mater. Sci. Technol., 2019, 35: 1508
doi: 10.1016/j.jmst.2019.01.014
20 Zhang X X, Bauer P P, Lutz A, et al. Microplasticity and macroplasticity behavior of additively manufactured Al-Mg-Sc-Zr alloys: In-situ experiment and modeling [J]. Int. J. Plast., 2023, 166: 103659
21 Zhang X X, Lutz A, Andrä H, et al. An additively manufactured and direct-aged AlSi3.5Mg2.5 alloy with superior strength and ductility: Micromechanical mechanisms [J]. Int. J. Plast., 2021, 146: 103083
22 Li Y, Yu J Y, Li S L, et al. The influence of post-aging treatment on the microstructure and micromechanical behaviors of additively manufactured maraging steel investigated by in situ high-energy X-ray diffraction [J]. J. Mater. Sci. Technol., 2024, 200: 1
23 Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
24 Harjo S, Tsuchida N, Abe J, et al. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction [J]. Sci. Rep., 2017, 7: 15149
doi: 10.1038/s41598-017-15252-5 pmid: 29123143
25 Zhang X X, Lutz A, Andrä H, et al. Strain hardening behavior of additively manufactured and annealed AlSi3.5Mg2.5 alloy [J]. J. Alloys Compd., 2022, 898: 162890
26 Santos Macías J G, Douillard T, Zhao L, et al. Influence on microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg [J]. Acta Mater., 2020, 201: 231
27 Dan C Y, Cui Y C, Wu Y, et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing [J]. Nat. Mater., 2023, 22: 1182
doi: 10.1038/s41563-023-01651-9 pmid: 37592031
[1] 李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
[2] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[3] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[4] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[7] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[8] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[9] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[10] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[12] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.