Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1079-1090    DOI: 10.11900/0412.1961.2024.00044
  研究论文 本期目录 | 过刊浏览 |
稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响
朱桂杰1, 王思清2, 查敏2, 李眉娟1(), 孙凯1(), 陈东风1
1 中国原子能科学研究院 核物理研究所 北京 102413
2 吉林大学 材料科学与工程学院 汽车材料教育部重点实验室 长春 130025
Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets
ZHU Guijie1, WANG Siqing2, ZHA Min2, LI Meijuan1(), SUN Kai1(), CHEN Dongfeng1
1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
引用本文:

朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
Guijie ZHU, Siqing WANG, Min ZHA, Meijuan LI, Kai SUN, Dongfeng CHEN. Effect of Rare Earth Element Ce on the Bulk Texture and Mechanical Anisotropy of As-Extruded Mg-0.3Al- 0.2Ca-0.5Mn Alloy Sheets[J]. Acta Metall Sin, 2024, 60(8): 1079-1090.

全文: PDF(4600 KB)   HTML
摘要: 

针对Mg-0.3Al-0.2Ca-0.5Mn合金在热挤压过程中容易形成对称性差的强基面织构从而导致力学性能各向异性的问题,本工作通过稀土元素Ce合金化的方法优化其基面织构进而改善材料的力学性能。利用中子衍射技术,结合SEM和EBSD等微观测试手段,研究稀土元素Ce对Mg-0.3Al-0.2Ca-0.5Mn挤压态镁合金板材的微观组织、体织构和力学各向异性的影响。结果表明,随着Ce含量的增加,挤压态镁合金板材中的第二相颗粒逐渐从Al8Mn5转变为Al8Mn4Ce和Al11Ce3,且第二相颗粒数量明显增多。0.05%Ce (质量分数)的添加并未明显改变合金板材的基面织构,而添加0.5%Ce后合金板材沿着挤压方向(ED)的双峰基面织构向双峰非基面织构转变,同时沿横向(TD)分布的丝织构组分明显减少,从而使得沿着ED和TD的拉伸屈服强度比值接近于1,合金板材各向异性显著降低。

关键词 挤压镁合金稀土元素Ce中子衍射体织构各向异性    
Abstract

Because deformed magnesium alloys with low density and desirable mechanical properties can save energy and reduce emissions, they are in considerable demand in industrial applications. However, due to their hcp crystal structure, magnesium alloys have a limited number of slip systems that can be activated at room temperature. At present, many deformed magnesium alloys still face the problems of insufficient formability and poor mechanical anisotropy at room temperature, which limit the development of secondary forming processes. Meanwhile, many reports have proven that regulating the texture of deformed magnesium alloys is an effective strategy to improve their formability. Therefore, this study primarily employs the neutron diffraction technology, combined with microscopic characterization methods such as SEM and EBSD, to systematically study the effects of the minor rare earth element Ce on the microstructure, bulk texture, and mechanical anisotropy of extruded Mg-0.3Al-0.2Ca-0.5Mn magnesium alloy sheet. The results show that as the Ce content increases, second-phase particles in the extruded magnesium alloy sheet gradually transform from Al8Mn5 to Ce-containing Al8Mn4Ce and Al11Ce3 particles and the number density of second-phase particles increases remarkably. The addition of 0.05%Ce (mass fraction) did not considerably improve the basal texture of the sheet. However, after the addition of 0.5%Ce, fiber texture components distributed along the transverse direction (TD) are substantially reduced while the texture of (0002) pole figure of the alloy changed from a bimodal basal texture to a bimodal nonbasal texture along the extrusion direction (ED). This nonbasal texture formation is mainly caused by larger Ce-containing second-phase particles (> 1 μm) promoting the particle-stimulated nucleation effect and preferential growth of nonbasal-oriented recrystallized grains. Therefore, when 0.5%Ce is added, the basal texture of the alloy is remarkably optimized, so that the ratio of the tensile yield strength along TD to that along ED is close to 1, implying that the anisotropy of the extruded Mg-0.3Al-0.2Ca-0.5Mn alloy has been substantially reduced by the minor addition of Ce element.

Key wordsextruded magnesium alloy    rare earth element Ce    neutron diffraction    bulk texture    anisotropy
收稿日期: 2024-02-04     
ZTFLH:  O571.56  
基金资助:国家重点研发计划项目(2023YFA1608801)
通讯作者: 孙 凯,ksun@ciae.ac.cn,主要从事中子散射技术及功能材料研究李眉娟,mjli@ciae.ac.cn,主要从事多晶材料中子织构研究
Corresponding author: SUN Kai, professor, Tel: (010)69358821, E-mail: ksun@ciae.ac.cnLI Meijuan, professor, Tel: (010)69359040, E-mail: mjli@ciae.ac.cn
作者简介: 朱桂杰,女,1989年生,博士
DesignationNominal alloyAlCaMnCeMg
AXMMg-0.3Al-0.2Ca-0.5Mn0.350.220.48Bal.
AXM + 0.05CeMg-0.3Al-0.2Ca-0.5Mn-0.05Ce0.320.240.520.05Bal.
AXM + 0.5CeMg-0.3Al-0.2Ca-0.5Mn-0.5Ce0.320.220.480.53Bal.
表1  实验所用镁合金实测化学成分 (mass fraction / %)
图1  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材显微组织的EBSD像和晶粒尺寸分布图
图2  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材的SEM背散射电子(BSE)像
图3  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材的XRD谱
图4  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材的高倍SEM-BSE像和EDS分析
图5  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材(101¯0)、(0002)和(101¯1)中子织构极图
图6  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材沿横向(TD)和挤压方向(ED)的室温拉伸力学性能及TD和ED方向拉伸屈服强度比
SampleTYS / MPaUTS / MPaEL / %
EDTDEDTDEDTD
AXM171.6 ± 0.5100.2 ± 1.8226.8 ± 0.7208.3 ± 1.019.1 ± 0.919.8 ± 0.6
AXM + 0.05Ce174.3 ± 1.398.6 ± 2.4233.1 ± 1.8202.5 ± 4.113.7 ± 1.312.8 ± 2.4
AXM + 0.5Ce140.7 ± 1.5138.5 ± 2.6218.0 ± 1.5219.1 ± 2.113.1 ± 1.111.3 ± 0.7
表2  不同Ce含量挤压态AXM合金板材的力学性能
Samplea / nmc / nmc / a
AXM0.3214240.5218821.62365
AXM + 0.05Ce0.3213170.5216451.62346
AXM + 0.5Ce0.3214470.5218001.62328
表3  AXM、AXM + 0.05Ce和AXM + 0.5Ce合金的轴比c / a
图7  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材的带对比图以及方框处的EBSD像、(0002)极图散点图、ED方向反极图散点图和基极取向分布图
图8  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材不同尺寸晶粒的(0002)极图和相应的反极图
图9  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材沿着ED和TD的(0001)<112¯0>基面滑移Schmid因子(SF)分布图
图10  挤压态AXM、AXM + 0.05Ce和AXM + 0.5Ce合金板材沿着TD和ED的(0001)<112¯0>基面滑移平均Schmid因子比
1 Kurzynowski T, Pawlak A, Smolina I. The potential of SLM technology for processing magnesium alloys in aerospace industry [J]. Arch. Civ. Mech. Eng., 2020, 20: 23
2 Song J F, She J, Chen D L, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. J. Magnes. Alloy., 2020, 8: 1
3 Bommala V K, Krishna M G, Rao C T. Magnesium matrix composites for biomedical applications: A review [J]. J. Magnes. Alloy., 2019, 7: 72
doi: 10.1016/j.jma.2018.11.001
4 Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. Int. J. Adv. Manuf. Technol., 2008, 39: 851
5 Ding H L, Shi X B, Wang Y Q, et al. Texture weakening and ductility variation of Mg-2Zn alloy with Ca or RE addition [J]. Mater. Sci. Eng., 2015, A645: 196
6 You S H, Huang Y D, Kainer K U, et al. Recent research and developments on wrought magnesium alloys [J]. J. Magnes. Alloy., 2017, 5: 239
7 Wang Q H, Jiang B, Chen D L, et al. Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: A review [J]. J. Mater. Sci., 2021, 56: 12965
8 Huang X S, Suzuki K, Chino Y, et al. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling [J]. J. Alloys Compd., 2015, 632: 94
9 Miller V M, Berman T D, Beyerlein I J, et al. Prediction of the plastic anisotropy of magnesium alloys with synthetic textures and implications for the effect of texture on formability [J]. Mater. Sci. Eng., 2016, A675: 345
10 Bohlen J, Nürnberg M R, Senn J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J]. Acta Mater., 2007, 55: 2101
11 Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloy., 2022, 10: 1476
12 Hantzsche K, Bohlen J, Wendt J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets [J]. Scr. Mater., 2010, 63: 725
13 Imandoust A, Barrett C D, Al-Samman T, et al. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys [J]. J. Mater. Sci., 2017, 52: 1
14 Li J S, Li M X, Hua Z M, et al. Effect of micro-alloyed Ce on the microstructure evolution and mechanical properties of rolled Mg-0.6Al-0.5Mn-0.2Ca alloy sheets [J]. J. Mater. Res. Technol., 2022, 19: 3088
15 Zhao J, Jiang B, Wang Q H, et al. Influence of Ce content on the microstructures and tensile properties of Mg-1Gd-0.5Zn alloys [J]. Mater. Sci. Eng., 2021, A823: 141675
16 Zuo J, Nakata T, Xu C, et al. Effect of annealing on microstructure evolution and age-hardening behavior of dilute Mg-Al-Ca-Mn alloy [J]. J. Mater. Res. Technol., 2022, 18: 1754
17 Nakata T, Xu C, Ajima R, et al. Strong and ductile age-hardening Mg-Al-Ca-Mn alloy that can be extruded as fast as aluminum alloys [J]. Acta Mater., 2017, 130: 261
18 Zhu G J, Li M J, Liu X L, et al. The latest progress on neutron texture diffractometer at China Advanced Research Reactor [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2023, 1047A: 167729
19 Li M X, Wang C, Li Y J, et al. Tailoring the microstructure and enhancing the corrosion resistance of extruded dilute Mg-0.6Al-0.5Mn-0.25Ca alloy by adding trace Ce [J]. Corros. Sci., 2022, 207: 110605
20 Wang X, Guan D K. The evolution of coarse grains and its effects on weakened basal texture during annealing of a cold-rolled magnesium AZ31B alloy [J]. J. Magnes. Alloy., 2022, 10: 1235
21 Basu I, Al-Samman T, Gottstein G. Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys [J]. Mater. Sci. Eng., 2013, A579: 50
22 Chai Y F, Jiang B, Song J F, et al. Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Sn-Zn alloy through Ca addition [J]. J. Alloys Compd., 2019, 782: 1076
23 Chai Y F, He C, Jiang B, et al. Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy [J]. J. Mater. Sci. Technol., 2020, 37: 26
doi: 10.1016/j.jmst.2019.07.036
24 Yang J D, Wang W X, Zhang M, et al. Effects of Gd/Nd ratio on the microstructures and tensile creep behavior of Mg-8Al-Gd-Nd alloys crept at 423 K [J]. J. Mater. Res. Technol., 2021, 14: 2522
25 Masoumi M, Hoseini M, Pekguleryuz M. The influence of Ce on the microstructure and rolling texture of Mg-1%Mn alloy [J]. Mater. Sci. Eng., 2011, A528: 3122
26 Peng P, Zhang K M, She J, et al. Role of second phases and grain boundaries on dynamic recrystallization behavior in ZK60 magnesium alloy [J]. J. Alloys Compd., 2021, 861: 157958
27 Peng P, Zhang L P, Zhao J Y, et al. Simultaneous improvement of strength and ductility in ZK60 magnesium alloy by constructing the bimodal grain structure [J]. J. Mater. Res. Technol., 2023, 22: 1026
28 Zhao J, Jiang B, Yuan Y, et al. Influence of Ca and Zn synergistic alloying on the microstructure, tensile properties and strain hardening of Mg-1Gd alloy [J]. Mater. Sci. Eng., 2020, A785: 139344
29 Chen W Z, Ma J F, Cui C, et al. Texture role in the mechanical property improvement contributed by grain refinement for Mg-2.6Nd-0.55Zn-0.5Zr alloy subjected to extrusion process [J]. Mater. Sci. Eng., 2022, A831: 142185
30 Sabbaghian M, Fakhar N, Nagy P, et al. Investigation of shear and tensile mechanical properties of ZK60 Mg alloy sheet processed by rolling and sheet extrusion [J]. Mater. Sci. Eng., 2021, A828: 142098
31 Guan K, Meng F Z, Qin P F, et al. Effects of samarium content on microstructure and mechanical properties of Mg-0.5Zn-0.5Zr alloy [J]. J. Mater. Sci. Technol., 2019, 35: 1368
doi: 10.1016/j.jmst.2019.01.019
32 Wu J L, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
doi: 10.1016/j.jmst.2019.10.010
33 Lu J W, Yin D D, Huang G H, et al. Plastic anisotropy and deformation behavior of extruded Mg-Y sheets at elevated temperatures [J]. Mater. Sci. Eng., 2017, A700: 598
34 Yin D D, Boehlert C J, Long L J, et al. Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg-Y sheets [J]. Int. J. Plast., 2021, 136: 102878
[1] 李彪, 张龙, 颜廷毅, 付华萌, 袁旭东, 文明月, 张宏伟, 李宏, 张海峰. 热处理工艺和W丝特性对W丝增强锆基非晶复合材料残余应力的影响[J]. 金属学报, 2024, 60(8): 1055-1063.
[2] 王浩宇, 吕熙睿, 陈琦, 熊瑛, 罗志新, 张洁, 王京阳. 高熵稀土单硅酸盐环境障涂层局域结构的原子对分布函数解析[J]. 金属学报, 2024, 60(8): 1130-1140.
[3] 林皓, 李建, 杨钊龙, 钟圣怡. 中子衍射应力分析技术及其应用进展[J]. 金属学报, 2024, 60(8): 1017-1030.
[4] 谷黎明, 冯效铭, 于朝, 张峻凡, 刘振宇, 何伦华, 卢怀乐, 李小虎, 王晨, 张晓东, 肖伯律, 马宗义. 深冷循环对SiC/Al复合材料宏微观残余应力的影响[J]. 金属学报, 2024, 60(8): 1031-1042.
[5] 任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154.
[6] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[7] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.
[8] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[9] 张子轩, 于金江, 刘金来. 镍基单晶高温合金DD432的持久性能各向异性[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] 王迪, 黄锦辉, 谭超林, 杨永强. 激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.