|
|
小角中子散射原位研究镍基高温合金第二相析出演化行为 |
李亚微1, 谢光1( ), 柯于斌2,3, 卢玉章1, 黄亚奇1, 张健1( ) |
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2 散裂中子源科学中心 东莞 523803 3 中国科学院高能物理研究所 北京 100049 |
|
In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys |
LI Yawei1, XIE Guang1( ), KE Yubin2,3, LU Yuzhang1, HUANG Yaqi1, ZHANG Jian1( ) |
1 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 Spallation Neutron Source Science Center, Dongguan 523803, China 3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
Yawei LI,
Guang XIE,
Yubin KE,
Yuzhang LU,
Yaqi HUANG,
Jian ZHANG.
In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. Acta Metall Sin, 2024, 60(8): 1100-1108.
1 |
Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 50
|
2 |
Lu X D, Du J H, Deng Q. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623
|
3 |
Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
|
4 |
Yu Z S, Zhang J X, Yuan Y, et al. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure [J]. Mater. Sci. Eng., 2015, A634: 55
|
5 |
Slama C, Abdellaoui M. Precipitation kinetics of γ′ and γ′′ particles in Inconel 718 and its influence on mechanical properties [J]. Mater. Today Commun., 2024, 38: 108158
|
6 |
Cozar R, Pineau A. Morphology of γ′ and γ′′ precipitates and thermal stability of Inconel 718 type alloys [J]. Metall. Trans., 1973, 4: 47
|
7 |
Zhao X B, Gu Y F, Lu J T, et al. New research development of superalloy GH4169 [J]. Rare Met. Mater. Eng., 2015, 44: 768
|
7 |
赵新宝, 谷月峰, 鲁金涛 等. GH4169合金的研究新进展 [J]. 稀有金属材料与工程, 2015, 44: 768
|
8 |
Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ′′ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
|
9 |
Le W, Chen Z W, Yan K, et al. Early evolution of δ phase and coarse γ′′ phase in Inconel 718 alloy with high temperature ageing [J]. Mater. Charact., 2021, 180: 111403
|
10 |
Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
|
11 |
Lee G H, Park M, Kim B, et al. Evaluation of precipitation phase and mechanical properties according to aging heat treatment temperature of Inconel 718 [J]. J. Mater. Res. Technol., 2023, 27: 4157
|
12 |
Balan A, Perez M, Chaise T, et al. Precipitation of γ′′ in Inconel 718 alloy from microstructure to mechanical properties [J]. Materialia, 2021, 20: 101187
|
13 |
Qiao Z, Li C, Zhang H J, et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1123
|
14 |
Alam T, Chaturvedi M, Ringer S P, et al. Precipitation and clustering in the early stages of ageing in Inconel 718 [J]. Mater. Sci. Eng., 2010, A527: 7770
|
15 |
Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ′- and γ′′- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
|
16 |
Yang Y, Liu Y Y, Hu L X, et al. Quantitative study on dynamic instantaneous dissolution of precipitated phases in 2195-T6 Al-Li alloy based on characterizations with SANS and TEM [J]. Acta Mater., 2024, 266: 119689
|
17 |
Wu W Z, Wang Z J, Li T F, et al. Study on the micro-mechanism of thermal aging hardening of Fe-0.6Cu alloy [J]. J. Shenyang Ligong Univ., 2020, 39(4): 21
|
17 |
吴文臻, 王子军, 李天富 等. Fe-0.6Cu合金的热时效硬化微观机制研究 [J]. 沈阳理工大学学报, 2020, 39(4): 21
|
18 |
Staron P, Christoph U, Appel F, et al. SANS investigation of precipitation hardening of two-phase γ-TiAl alloys [J]. Appl. Phys., 2002, 74(suppl.1)A : s1163
|
19 |
Simm T H, Sun L, Galvin D R, et al. A SANS and APT study of precipitate evolution and strengthening in a maraging steel [J]. Mater. Sci. Eng., 2017, A702: 414
|
20 |
Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595: 245
|
21 |
Brass A M, Chêne J. SANS analysis of γ′ precipitation in the γ matrix of Ni base superalloy single crystals [J]. Scr. Mater., 2000, 43: 913
|
22 |
Collins D M, Heenan R K, Stone H J. Characterization of gamma prime (γ′) precipitates in a polycrystalline nickel-base superalloy using small-angle neutron scattering [J]. Metall. Mater. Trans., 2011, 42A: 49
|
23 |
Zrník J, Strunz P, Horňák P, et al. Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS [J]. Appl. Phys., 2002, 74A(suppl.1) : s1155
|
24 |
Ratel N, Demé B, Bastie P, et al. In situ SANS investigation of the kinetics of rafting of γ′ precipitates in a fourth-generation single-crystal nickel-based superalloy [J]. Scr. Mater., 2008, 59: 1167
|
25 |
Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: China Standard Press, 2002: 325
|
25 |
《中国航空材料手册》编辑委员会. 中国航空材料手册 [M]. 第2版. 北京: 中国标准出版社, 2002: 325
|
26 |
Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48: 1629
|
27 |
Wang W J. Spinodal decomposition and its effect on mechanical properties of Ti2448 alloy [D]. Hefei: University of Science and Technology of China, 2022
|
27 |
王伟杰. Ti2448合金的成分分解和组织性能研究 [D]. 合肥: 中国科学技术大学, 2022
|
28 |
Hörnqvist M, Thuvander M, Steuwer A, et al. Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering [J]. Appl. Phys. Lett., 2015, 106: 061911
|
29 |
Wu X L, Wang B, Rehm C, et al. Ultra-small-angle neutron scattering study on temperature-dependent precipitate evolution in CoCrFeNiMo0.3 high entropy alloy [J]. Acta Mater., 2022, 222: 117446
|
30 |
Sarkar S K, Shinde D, Das A, et al. Quantitative evaluation of spinodal decomposition in thermally aged binary Fe-35 at.% Cr alloys by correlative atom probe tomography and small angle neutron scattering analyses [J]. Materialia, 2021, 15: 101014
|
31 |
Rielli V V, Theska F, Godor F, et al. Evolution of nanoscale precipitates during common Alloy 718 ageing treatments [J]. Mater. Des., 2021, 205: 109762
|
32 |
He J, Han G, Fukuyama S, et al. Interfaces in a modified Inconel 718 with compact precipitates [J]. Acta Mater., 1998, 46: 215
|
33 |
McAllister D, Lv D, Deutchman H, et al. Characterization and modeling of deformation mechanisms in Ni-base superalloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [M]. Hoboken: Wiley, 2016: 821
|
34 |
Kindrachuk V, Wanderka N, Banhart J. γ′/γ″ co-precipitation in Inconel 706 alloy: A 3D finite element study [J]. Mater. Sci. Eng., 2006, A417: 82
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|