Please wait a minute...
金属学报  2024, Vol. 60 Issue (8): 1100-1108    DOI: 10.11900/0412.1961.2024.00068
  研究论文 本期目录 | 过刊浏览 |
小角中子散射原位研究镍基高温合金第二相析出演化行为
李亚微1, 谢光1(), 柯于斌2,3, 卢玉章1, 黄亚奇1, 张健1()
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 散裂中子源科学中心 东莞 523803
3 中国科学院高能物理研究所 北京 100049
In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys
LI Yawei1, XIE Guang1(), KE Yubin2,3, LU Yuzhang1, HUANG Yaqi1, ZHANG Jian1()
1 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Spallation Neutron Source Science Center, Dongguan 523803, China
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
引用本文:

李亚微, 谢光, 柯于斌, 卢玉章, 黄亚奇, 张健. 小角中子散射原位研究镍基高温合金第二相析出演化行为[J]. 金属学报, 2024, 60(8): 1100-1108.
Yawei LI, Guang XIE, Yubin KE, Yuzhang LU, Yaqi HUANG, Jian ZHANG. In Situ Small-Angle Neutron Scattering Study of Precipitation and Evolution Behavior of Secondary Phases in Ni-Based Superalloys[J]. Acta Metall Sin, 2024, 60(8): 1100-1108.

全文: PDF(2193 KB)   HTML
摘要: 

γ′和γ′′相是镍基高温合金中的重要强化相,为了阐明其在热处理中的析出演化机制,本工作以广泛使用的GH4169合金为对象,采用小角中子散射原位研究了固溶时效热处理中第二相的析出演化行为,并借助TEM对非原位样品进行验证分析。结果表明:合金中第二相主要在时效过程中析出,包括球状γ′相和γ′与γ′′复合相(以γ′′/γ′/γ′′三明治结构为主)。其中,球状γ′相数量随时效进行不断增多;复合相在一级时效中大量形成,但在二级时效中数量变化不大。此外,2类析出相尺寸均在一级时效时逐渐增大,在二级时效时几乎不变。在整个时效过程中,球状γ′相与基体相界面逐渐尖锐,而复合相越来越扁,其界面成分波动始终显著。由此可知,第二相的析出演化行为受控于界面元素扩散机制。

关键词 GH4169热处理小角中子散射第二相析出演化行为    
Abstract

The γ′ and γ′′ phases are crucial strengthening components in Ni-based superalloys. Understanding their precipitation and evolution mechanism during heat treatment is essential for tailoring the mechanical properties of the superalloys. Herein, GH4169 superalloy was used to investigate the precipitation and evolution behaviors of secondary phases during in situ standard heat treatment by time-of-flight small-angle neutron scattering. Further, transmission electron microscopy was employed to observe the secondary phases generated in samples after ex situ heat treatment. Results showed that the secondary phases, including the spherical γ′ phase and coprecipitates (mainly the γ′′/γ′/γ′′ sandwich structure), mostly occurred during the aging treatment. After the formation of coprecipitates during the first aging treatment (AT1), their quantity apparently remained stable during the second aging treatment (AT2). Furthermore, the average size of the γ′ phase and coprecipitates gradually increased during the AT1 stage while remaining almost constant during the AT2 stage. Throughout the aging process, the interface between spherical γ′ phase and γ matrix exhibited a decreased composition fluctuation, while the interface fluctuation of coprecipitates was always significant. Thus, it can be inferred that the precipitation and evolution behaviors of secondary phases are controlled by the element diffusion at the interface.

Key wordsGH4169    heat treatment    small-angle neutron scattering    second phase    precipitation and evolution behavior
收稿日期: 2024-03-05     
ZTFLH:  TG132.3  
基金资助:国家重点研发计划项目(2021YFA1600603);国家自然科学基金项目(52271042);国家自然科学基金项目(51911530154);国家自然科学基金项目(91860201);国家自然科学基金项目(U2141206);国家科技重大专项项目(J2019-VI-0010-0124);中国科学院依托重大科技基础设施的建制化科研项目(JZHKYPT-2021-01);航空发动机及燃气轮机基础科学中心项目(P2022-C-IV-001-001)
通讯作者: 谢 光,gxie@imr.ac.cn,主要从事高温合金组织性能研究张 健,jianzhang@imr.ac.cn,主要从事高温合金研发
Corresponding author: XIE Guang, professor, Tel: (024)23971712, E-mail: gxie@imr.ac.cnZHANG Jian, professor, Tel: (024)23911196, E-mail: jianzhang@imr.ac.cn
作者简介: 李亚微,男,1995年,博士
图1  GH4169高温合金原位热处理工艺
图2  原位热处理不同阶段下的典型二维小角中子散射(SANS)图谱
图3  原位热处理不同阶段不同时刻下的一维I-Q关系曲线
图4  原位时效热处理中Porod因子的变化
图5  原位时效热处理中盘状第二相半径(R)的变化
图6  原位时效热处理中球状第二相尺寸(r)分布
图7  原位时效热处理中球状第二相中值半径(rmed)的变化
图8  非原位热处理样品中第二相TEM表征
图9  盘状γ′′/γ′/γ′′三明治结构示意图
Sample state

Mean radius

nm

Shape factor

Number density

10-4 nm-2

Volume fraction

%

rγR1(γ′′/γ′/γ′′)R2 (γ′′/γ′/γ′′)γ′′/γ′/γ′′γγ′′/γ′/γ′′γγ′′/γ′/γ′′
ST + AT111.2 ± 1.911.4 ± 3.67.3 ± 2.70.64-12.6 ± 0.6-30.8 ± 1.5
ST + AT1 + AT210.6 ± 4.714.4 ± 4.56.0 ± 1.30.42-12.5 ± 0.7-29.5 ± 1.0
表1  非原位热处理样品第二相定量统计结果
图10  第二相析出演化过程示意图
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 50
2 Lu X D, Du J H, Deng Q. High temperature structure stability of GH4169 superalloy [J]. Mater. Sci. Eng., 2013, A559: 623
3 Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718 [J]. Mater. Sci. Eng., 2003, A355: 114
4 Yu Z S, Zhang J X, Yuan Y, et al. Microstructural evolution and mechanical properties of Inconel 718 after thermal exposure [J]. Mater. Sci. Eng., 2015, A634: 55
5 Slama C, Abdellaoui M. Precipitation kinetics of γ′ and γ′′ particles in Inconel 718 and its influence on mechanical properties [J]. Mater. Today Commun., 2024, 38: 108158
6 Cozar R, Pineau A. Morphology of γ′ and γ′′ precipitates and thermal stability of Inconel 718 type alloys [J]. Metall. Trans., 1973, 4: 47
7 Zhao X B, Gu Y F, Lu J T, et al. New research development of superalloy GH4169 [J]. Rare Met. Mater. Eng., 2015, 44: 768
7 赵新宝, 谷月峰, 鲁金涛 等. GH4169合金的研究新进展 [J]. 稀有金属材料与工程, 2015, 44: 768
8 Cao G H, Sun T Y, Wang C H, et al. Investigations of γ′, γ′′ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting [J]. Mater. Charact., 2018, 136: 398
9 Le W, Chen Z W, Yan K, et al. Early evolution of δ phase and coarse γ′′ phase in Inconel 718 alloy with high temperature ageing [J]. Mater. Charact., 2021, 180: 111403
10 Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718 [J]. J. Alloys Compd., 2000, 306: 277
11 Lee G H, Park M, Kim B, et al. Evaluation of precipitation phase and mechanical properties according to aging heat treatment temperature of Inconel 718 [J]. J. Mater. Res. Technol., 2023, 27: 4157
12 Balan A, Perez M, Chaise T, et al. Precipitation of γ′′ in Inconel 718 alloy from microstructure to mechanical properties [J]. Materialia, 2021, 20: 101187
13 Qiao Z, Li C, Zhang H J, et al. Evaluation on elevated-temperature stability of modified 718-type alloys with varied phase configurations [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1123
14 Alam T, Chaturvedi M, Ringer S P, et al. Precipitation and clustering in the early stages of ageing in Inconel 718 [J]. Mater. Sci. Eng., 2010, A527: 7770
15 Lawitzki R, Hassan S, Karge L, et al. Differentiation of γ′- and γ′′- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy [J]. Acta Mater., 2019, 163: 28
doi: 10.1016/j.actamat.2018.10.014
16 Yang Y, Liu Y Y, Hu L X, et al. Quantitative study on dynamic instantaneous dissolution of precipitated phases in 2195-T6 Al-Li alloy based on characterizations with SANS and TEM [J]. Acta Mater., 2024, 266: 119689
17 Wu W Z, Wang Z J, Li T F, et al. Study on the micro-mechanism of thermal aging hardening of Fe-0.6Cu alloy [J]. J. Shenyang Ligong Univ., 2020, 39(4): 21
17 吴文臻, 王子军, 李天富 等. Fe-0.6Cu合金的热时效硬化微观机制研究 [J]. 沈阳理工大学学报, 2020, 39(4): 21
18 Staron P, Christoph U, Appel F, et al. SANS investigation of precipitation hardening of two-phase γ-TiAl alloys [J]. Appl. Phys., 2002, 74(suppl.1)A : s1163
19 Simm T H, Sun L, Galvin D R, et al. A SANS and APT study of precipitate evolution and strengthening in a maraging steel [J]. Mater. Sci. Eng., 2017, A702: 414
20 Yang Y, Chen T Y, Tan L Z, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy [J]. Nature, 2021, 595: 245
21 Brass A M, Chêne J. SANS analysis of γ′ precipitation in the γ matrix of Ni base superalloy single crystals [J]. Scr. Mater., 2000, 43: 913
22 Collins D M, Heenan R K, Stone H J. Characterization of gamma prime (γ′) precipitates in a polycrystalline nickel-base superalloy using small-angle neutron scattering [J]. Metall. Mater. Trans., 2011, 42A: 49
23 Zrník J, Strunz P, Horňák P, et al. Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS [J]. Appl. Phys., 2002, 74A(suppl.1) : s1155
24 Ratel N, Demé B, Bastie P, et al. In situ SANS investigation of the kinetics of rafting of γ′ precipitates in a fourth-generation single-crystal nickel-based superalloy [J]. Scr. Mater., 2008, 59: 1167
25 Editorial Board of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook [M]. 2nd Ed., Beijing: China Standard Press, 2002: 325
25 《中国航空材料手册》编辑委员会. 中国航空材料手册 [M]. 第2版. 北京: 中国标准出版社, 2002: 325
26 Ujihara T, Osamura K. Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering [J]. Acta Mater., 2000, 48: 1629
27 Wang W J. Spinodal decomposition and its effect on mechanical properties of Ti2448 alloy [D]. Hefei: University of Science and Technology of China, 2022
27 王伟杰. Ti2448合金的成分分解和组织性能研究 [D]. 合肥: 中国科学技术大学, 2022
28 Hörnqvist M, Thuvander M, Steuwer A, et al. Early stages of spinodal decomposition in Fe-Cr resolved by in-situ small-angle neutron scattering [J]. Appl. Phys. Lett., 2015, 106: 061911
29 Wu X L, Wang B, Rehm C, et al. Ultra-small-angle neutron scattering study on temperature-dependent precipitate evolution in CoCrFeNiMo0.3 high entropy alloy [J]. Acta Mater., 2022, 222: 117446
30 Sarkar S K, Shinde D, Das A, et al. Quantitative evaluation of spinodal decomposition in thermally aged binary Fe-35 at.% Cr alloys by correlative atom probe tomography and small angle neutron scattering analyses [J]. Materialia, 2021, 15: 101014
31 Rielli V V, Theska F, Godor F, et al. Evolution of nanoscale precipitates during common Alloy 718 ageing treatments [J]. Mater. Des., 2021, 205: 109762
32 He J, Han G, Fukuyama S, et al. Interfaces in a modified Inconel 718 with compact precipitates [J]. Acta Mater., 1998, 46: 215
33 McAllister D, Lv D, Deutchman H, et al. Characterization and modeling of deformation mechanisms in Ni-base superalloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [M]. Hoboken: Wiley, 2016: 821
34 Kindrachuk V, Wanderka N, Banhart J. γ′/γ″ co-precipitation in Inconel 706 alloy: A 3D finite element study [J]. Mater. Sci. Eng., 2006, A417: 82
[1] 张冉, 朱士泽, 刘振宇, 柯于斌, 王东, 肖伯律, 马宗义. 时效温度对SiC/Al-Zn-Mg-Cu复合材料时效析出行为的影响[J]. 金属学报, 2024, 60(8): 1043-1054.
[2] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[3] 柯于斌, 李彬, 段辉平. 利用小角中子核磁散射分离研究AerMet100钢中纳米析出相的形貌和成分[J]. 金属学报, 2024, 60(8): 1109-1118.
[4] 张竟文, 余黎明, 刘晨曦, 丁然, 刘永长. Cr马氏体耐热钢的协同强化机制及形变热处理应用[J]. 金属学报, 2024, 60(6): 713-730.
[5] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[6] 凡莉花, 李金临, 孙九栋, 吕梦甜, 王清, 董闯. Cr/Mo/W元素对镍基高温合金γ/γ′共格组织热稳定性的影响[J]. 金属学报, 2024, 60(4): 453-463.
[7] 余华, 李昕, 江河, 姚志浩, 董建新. 碳化物特征对GH3536合金冷变形损伤的影响及控制[J]. 金属学报, 2024, 60(4): 464-472.
[8] 王秀琦, 李天瑞, 刘国怀, 郭瑞琪, 王昭东. 交叉包套轧制Ti-44Al-5Nb-1Mo-2V-0.2B合金的微观组织演化及力学性能[J]. 金属学报, 2024, 60(1): 95-106.
[9] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[10] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[12] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[13] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[14] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[15] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.