|
|
共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理 |
王瀚铭, 杜银( ), 裴旭辉, 王海丰( ) |
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072 |
|
Tribological Property and Wear Mechanism of NbMoZrVSi x Refractory High-Entropy Alloy Strengthened by Eutectic Structure |
WANG Hanming, DU Yin( ), PEI Xuhui, WANG Haifeng( ) |
Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
Hanming WANG,
Yin DU,
Xuhui PEI,
Haifeng WANG.
Tribological Property and Wear Mechanism of NbMoZrVSi x Refractory High-Entropy Alloy Strengthened by Eutectic Structure[J]. Acta Metall Sin, 2024, 60(7): 937-946.
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Yeh J W, Chen S K, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
|
3 |
Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
|
4 |
Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition [J]. Metall. Mater. Trans., 2004, 35A: 1465
|
5 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
6 |
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
|
7 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
8 |
Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
|
9 |
Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
|
10 |
Li Q, Chen W M, Zhong J, et al. On sluggish diffusion in fcc Al-Co-Cr-Fe-Ni high-entropy alloys: An experimental and numerical study [J]. Metals, 2017, 8: 16
|
11 |
Kottke J, Laurent-Brocq M, Fareed A, et al. Tracer diffusion in the NiCoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy [J]. Scr. Mater., 2019, 159: 94
|
12 |
Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy [J]. Mater. Res. Lett., 2021, 9: 239
|
13 |
Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory Al x HfNbTaTiZr alloys [J]. J. Alloys Compd., 2015, 624: 100
|
14 |
Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z
pmid: 33288762
|
15 |
Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
|
16 |
Öztürk S, Alptekin F, Önal S, et al. Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy [J]. J. Alloys Compd., 2022, 903: 163867
|
17 |
Ji C W, Ma A B, Jiang J H. Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys [J]. J. Alloys Compd., 2022, 900: 163508
|
18 |
Manea C A, Sohaciu M, Stefănoiu R, et al. New HfNbTaTiZr high-entropy alloy coatings produced by electrospark deposition with high corrosion resistance [J]. Materials, 2021, 14: 4333
|
19 |
Pei X H, Du Y, Hao X X, et al. Microstructure and tribological properties of TiZrV0.5Nb0.5Al x refractory high entropy alloys at elevated temperature [J]. Wear, 2022, 488-489: 204166
|
20 |
Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces [J]. Tribol. Int., 2021, 153: 106599
|
21 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
22 |
Poulia A, Georgatis E, Lekatou A, et al. Dry-sliding wear response of MoTaWNbV high entropy alloy [J]. Adv. Eng. Mater., 2017, 19: 1600535
|
23 |
Poulia A, Georgatis E, Karantzalis A. Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy [J]. Met. Mater. Int., 2019, 25: 1529
|
24 |
Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 126.
|
25 |
Song Q T, Xu Y K, Xu J. Dry-slidingwear behavior of (TiZrNbTa)90-Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
|
25 |
宋芊汀, 徐映坤, 徐 坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56: 1507
doi: 10.11900/0412.1961.2020.00031
|
26 |
Pole M, Sadeghilaridjani M, Shittu J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-6 elemental palette [J]. J. Alloys Compd., 2020, 843: 156004
|
27 |
Du Y, Pei X H, Tang Z W, et al. Mechanical and tribological performance of CoCrNiHf x eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90: 194
|
28 |
Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound [J]. J. Alloys Compd., 2016, 660: 197
|
29 |
Deng G Y, Tieu A K, Lan X D, et al. Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy [J]. Tribol. Int., 2020, 144: 106116
|
30 |
Choi H, Jang J, Zhang T F, et al. Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr-Si-N nanocomposite coatings deposited by a hybrid coating system [J]. Surf. Coat. Technol., 2014, 259: 707
|
31 |
Xin B B, Zhang A J, Han J S, et al. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si [J]. J. Alloys Compd., 2021, 869: 159122
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|