Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 937-946    DOI: 10.11900/0412.1961.2022.00223
  研究论文 本期目录 | 过刊浏览 |
共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理
王瀚铭, 杜银(), 裴旭辉, 王海丰()
西北工业大学 凝固技术国家重点实验室 先进润滑与密封材料研究中心 西安 710072
Tribological Property and Wear Mechanism of NbMoZrVSi x Refractory High-Entropy Alloy Strengthened by Eutectic Structure
WANG Hanming, DU Yin(), PEI Xuhui, WANG Haifeng()
Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

王瀚铭, 杜银, 裴旭辉, 王海丰. 共晶组织强化NbMoZrVSi x 难熔高熵合金的摩擦磨损性能及磨损机理[J]. 金属学报, 2024, 60(7): 937-946.
Hanming WANG, Yin DU, Xuhui PEI, Haifeng WANG. Tribological Property and Wear Mechanism of NbMoZrVSi x Refractory High-Entropy Alloy Strengthened by Eutectic Structure[J]. Acta Metall Sin, 2024, 60(7): 937-946.

全文: PDF(5080 KB)   HTML
摘要: 

难熔高熵合金共晶强化组织的形成机制及其对室温摩擦磨损行为的研究,可为后续开发具有优异摩擦磨损性能的难熔高熵合金提供新的设计思路。本工作利用摩擦试验机、SEM和XPS等手段研究了微量Si元素添加对NbMoZrV难熔高熵合金室温摩擦学性能的影响规律,分析了不同硅化物的析出形态对合金磨损机理的影响。结果表明:适量Si元素添加时,NbMoZrVSi0.1难熔高熵合金的bcc基体晶界处会均匀析出由Zr-Zr3Si相组成的共晶组织结构,该共晶组织会显著提高合金的硬度和耐磨性。不同于NbMoZrV、NbMoZrVSi0.05和NbMoZrVSi0.2合金波动较大的摩擦学行为,在不同加载力下,含有共晶组织结构的NbMoZrVSi0.1难熔高熵合金在室温滑动干摩擦实验中表现出了稳定的摩擦系数和磨损率。磨损机理分析表明,Zr-Zr3Si共晶组织的形成会抑制NbMoZrVSi0.1难熔高熵合金在摩擦过程中的裂纹萌生扩展以及脆性剥落,并促进随后均匀氧化的发生,使得其仅表现出轻微磨粒磨损的特征,从而使其耐磨性得到显著提升。

关键词 难熔高熵合金共晶组织耐磨性磨粒磨损    
Abstract

In recent years, refractory high-entropy alloys (RHEAs) have gained widespread attention owing to their high structural stability and excellent mechanical properties at both room and elevated temperatures. However, their wear resistance at room temperature is often poor due to their fragility. In this study, the effect of adding small amounts of silicon (Si) to NbMoZrV RHEA on its tribological properties and wear mechanism at room temperature have been studied using various techniques including tribometer, SEM, and XPS. The results showed that adding a moderate amount of Si induced the homogeneous precipitation of a eutectic structure composed of Zr-Zr3Si phase at the bcc matrix grain boundary. This eutectic structure significantly improved the hardness and wear resistance of the NbMoZrVSi0.1 RHEA. Unlike the poor tribological behavior observed in NbMoZrVSi0.05 and NbMoZrVSi0.2 RHEAs, the NbMoZrVSi0.1 RHEA exhibited stable coefficient of friction and wear rate under dry sliding wear test at room temperature with varying normal loads. The Zr-Zr3Si eutectic structure effectively inhibited the initiation and propagation of cracks and brittle spalling during the sliding wear test, resulting in only slight abrasive wear of the NbMoZrVSi0.1 RHEA. Moreover, the mechanism promoted the subsequent homogeneous oxidation of the worn surface.

Key wordsrefractory high-entropy alloy    eutectic structure    wear resistance    abrasive wear
收稿日期: 2022-05-07     
ZTFLH:  TG113  
基金资助:国家自然科学基金项目(51975474);中央高校基本科研业务费项目(3102019JC001)
通讯作者: 杜 银,duyin@nwpu.edu.cn,主要从事耐磨高熵合金设计制备及性能研究;
王海丰,haifengw81@nwpu.edu.cn,主要从事金属基及陶瓷基耐磨及润滑材料设计、制备及应用研究
Corresponding author: DU Yin, Tel: 18049591909, E-mail: duyin@nwpu.edu.cn;
作者简介: 王瀚铭,男,1999年生,硕士生
图1  铸态Si0~Si0.2合金的XRD谱
图2  铸态NbMoZrVSi x 合金的BSE像
图3  Si0~Si0.2合金的BSE像及对应的EDS元素分布图
图4  Si0.1合金中的共晶组织BSE像及EDS元素分布图
PointSiVZrNbMo
134.672.1853.719.440.00
235.262.1852.2410.130.19
335.242.6351.9310.200.00
420.523.8559.5616.040.00
531.772.5255.949.750.00
64.0327.3033.2120.2115.23
720.503.5460.7714.900.26
81.618.0266.8422.291.21
表1  图3d和4b中各点区域的化学元素组成 (atomic fraction / %)
图5  Si0~Si0.2合金的显微硬度
图6  Si0~Si0.2合金摩擦实验结果
图7  5 N-5 Hz-30 min工况下Si0~Si0.2合金磨痕表面的SEM像及EDS元素分布图
图8  10 N-5 Hz-120 min工况下Si0~Si0.2合金磨痕表面的SEM像
图9  Si0~Si0.2合金在5 N-5 Hz-30 min工况下干摩擦所产生的磨屑的XPS元素窄谱
图10  Si0.1和Si0.05合金在5 N-5 Hz-30 min工况下的磨屑形貌
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Yeh J W, Chen S K, Chin T S, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metall. Mater. Trans., 2004, 35A: 2533
3 Huang P K, Yeh J W, Shun T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating [J]. Adv. Eng. Mater., 2004, 6: 74
4 Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition [J]. Metall. Mater. Trans., 2004, 35A: 1465
5 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
6 Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
7 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
8 Guo W, Dmowski W, Noh J Y, et al. Local atomic structure of a high-entropy alloy: An X-ray and neutron scattering study [J]. Metall. Mater. Trans., 2013, 44A: 1994
9 Ranganathan S. Alloyed pleasures: Multimetallic cocktails [J]. Curr. Sci., 2003, 85: 1404
10 Li Q, Chen W M, Zhong J, et al. On sluggish diffusion in fcc Al-Co-Cr-Fe-Ni high-entropy alloys: An experimental and numerical study [J]. Metals, 2017, 8: 16
11 Kottke J, Laurent-Brocq M, Fareed A, et al. Tracer diffusion in the NiCoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy [J]. Scr. Mater., 2019, 159: 94
12 Mehta A, Sohn Y. Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy [J]. Mater. Res. Lett., 2021, 9: 239
13 Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory Al x HfNbTaTiZr alloys [J]. J. Alloys Compd., 2015, 624: 100
14 Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z pmid: 33288762
15 Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
16 Öztürk S, Alptekin F, Önal S, et al. Effect of titanium addition on the corrosion behavior of CoCuFeNiMn high entropy alloy [J]. J. Alloys Compd., 2022, 903: 163867
17 Ji C W, Ma A B, Jiang J H. Mechanical properties and corrosion behavior of novel Al-Mg-Zn-Cu-Si lightweight high entropy alloys [J]. J. Alloys Compd., 2022, 900: 163508
18 Manea C A, Sohaciu M, Stefănoiu R, et al. New HfNbTaTiZr high-entropy alloy coatings produced by electrospark deposition with high corrosion resistance [J]. Materials, 2021, 14: 4333
19 Pei X H, Du Y, Hao X X, et al. Microstructure and tribological properties of TiZrV0.5Nb0.5Al x refractory high entropy alloys at elevated temperature [J]. Wear, 2022, 488-489: 204166
20 Miao J W, Liang H, Zhang A J, et al. Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces [J]. Tribol. Int., 2021, 153: 106599
21 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
22 Poulia A, Georgatis E, Lekatou A, et al. Dry-sliding wear response of MoTaWNbV high entropy alloy [J]. Adv. Eng. Mater., 2017, 19: 1600535
23 Poulia A, Georgatis E, Karantzalis A. Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy [J]. Met. Mater. Int., 2019, 25: 1529
24 Mathiou C, Poulia A, Georgatis E, et al. Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy [J]. Mater. Chem. Phys., 2018, 210: 126.
25 Song Q T, Xu Y K, Xu J. Dry-slidingwear behavior of (TiZrNbTa)90-Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
25 宋芊汀, 徐映坤, 徐 坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56: 1507
doi: 10.11900/0412.1961.2020.00031
26 Pole M, Sadeghilaridjani M, Shittu J, et al. High temperature wear behavior of refractory high entropy alloys based on 4-6 elemental palette [J]. J. Alloys Compd., 2020, 843: 156004
27 Du Y, Pei X H, Tang Z W, et al. Mechanical and tribological performance of CoCrNiHf x eutectic medium-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 90: 194
28 Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound [J]. J. Alloys Compd., 2016, 660: 197
29 Deng G Y, Tieu A K, Lan X D, et al. Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy [J]. Tribol. Int., 2020, 144: 106116
30 Choi H, Jang J, Zhang T F, et al. Effect of Si addition on the microstructure, mechanical properties and tribological properties of Zr-Si-N nanocomposite coatings deposited by a hybrid coating system [J]. Surf. Coat. Technol., 2014, 259: 707
31 Xin B B, Zhang A J, Han J S, et al. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si [J]. J. Alloys Compd., 2021, 869: 159122
[1] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[2] 韩林至, 牟娟, 周永康, 朱正旺, 张海峰. 热处理温度对Ti0.5Zr1.5NbTa0.5Sn0.2 高熵合金组织结构与力学性能的影响[J]. 金属学报, 2022, 58(9): 1159-1168.
[3] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[4] 马德新, 赵运兴, 徐维台, 皮立波, 李重行. 高温合金单晶铸件中共晶组织分布的表面效应[J]. 金属学报, 2021, 57(12): 1539-1548.
[5] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[6] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[7] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[8] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[9] 何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
[10] 陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.
[11] 刘晓波, 赵宇光. 不同制备条件下原位Mg2Si/Al复合材料的组织演变和耐磨性*[J]. 金属学报, 2014, 50(6): 753-761.
[12] 孙挺, 宋仁伯, 杨富强, 李亚萍, 吴春京. 下贝氏体球墨铸铁在腐蚀介质中的磨粒磨损行为[J]. 金属学报, 2014, 50(11): 1327-1334.
[13] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[14] 李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
[15] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.