Please wait a minute...
金属学报  2014, Vol. 50 Issue (7): 795-801    DOI: 10.3724/SP.J.1037.2013.00813
  论文 本期目录 | 过刊浏览 |
过冷Fe82B17Si1合金的再辉效应模拟及组织演化*
陈正1,2), 杨亚楠1), 陈强1), 许军峰2), 唐跃跃1), 刘峰2)
1) 中国矿业大学材料科学与工程学院, 徐州 221116
2) 西北工业大学凝固技术国家重点实验室, 西安 710072
RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OFUNDERCOOLED Fe82B17Si1 ALLOY
CHEN Zheng 1, 2), YANG Yanan 1), CHEN Qiang 1), XU Junfeng 2), TANG Yueyue 1), LIU Feng 2)
1) School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
2) State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
全文: PDF(4897 KB)   HTML
摘要: 

通过熔融玻璃净化与循环过热相结合的方法获得过冷度ΔT=6~280 K范围内的Fe82B17Si1共晶合金的凝固组织演变; 结合突变方程和JMAK模型拟合凝固过程的冷却曲线, 拟合结果符合Fe82B17Si1共晶合金的组织类型及形态随过冷度的变化规律. 结果表明, 当6 K≤ΔT<75 K时, Fe82B17Si1合金中形成了复杂规则共晶及准规则共晶组成的混合共晶组织; 当75 K≤ΔT<180 K时, 凝固组织由混合共晶组织和深过冷非规则共晶组织组成; 当180 K≤ΔT<250 K时, 凝固组织由不同含量的初生a-Fe相和枝晶间深过冷非规则共晶组织组成; 当ΔT >250 K时, 凝固组织为完全非规则共晶组织.

关键词 Fe82B17Si1合金JMAK模型过冷共晶组织    
Abstract:Eutectic alloys (e.g. Fe-B-Si) as important casting alloys are the most commonly used material in industrial production. Fe-B-Si eutectic alloy is a kind of soft magnetic materials, has the very important application prospect in the market. In the past few decades, research on eutectic solidification alloys has achieved important results. The microstructure evolution, nucleation and growth theory of Fe-B-Si eutectic alloy under non-equilibrium condition have been perfected. But the recalescence effect on microstructure evolution has not been accurately described theoretically. The microstructure evolution of undercooled Fe82B17Si1 alloy in the obtained undercooling range ΔT=6~280 K were investigated by employing the glass fluxing technique in combination with cyclical superheating. The cooling curves of solidification process were fitted in combination of break equation and JMAK model, and the calculated results were consistent with the evolution of pattern of organization and microstructure of Fe82B17Si1 eutectic alloy. When 6 K≤ΔT<75 K, Fe82B17Si1 alloy was made of complex rules eutectic and eutectic mixture of quasi regular eutectic. When 75 K≤ΔT<180 K, the solidification microstructure was composed of a mixture of eutectic and deeply undercooled irregular eutectic. When 180 K≤ΔT<250 K, the solidification microstructure consists of primary a-Fe phase as well as the irregular eutectic among dendrite. When ΔT >250 K, the solidification structure was completely non-eutectic organization.
Key wordsFe82B17Si1 alloy    JMAK model    undercooling    eutectic structure
收稿日期: 2013-12-13     
ZTFLH:  TG115.21  
基金资助:* 国家自然科学基金项目 51101169 , 中央高校基本科研业务费专项资金项目2014QNA07及中国博士后基金项目2013M540475 资助
Corresponding author: CHEN Zheng, associate professor, Tel: 15162125376,
E-mail : chenzheng1218@163.com   
作者简介: 陈 正, 男, 1980年生, 副教授, 博士

引用本文:

陈正, 杨亚楠, 陈强, 许军峰, 唐跃跃, 刘峰. 过冷Fe82B17Si1合金的再辉效应模拟及组织演化*[J]. 金属学报, 2014, 50(7): 795-801.
CHEN Zheng, YANG Yanan, CHEN Qiang, XU Junfeng, TANG Yueyue, LIU Feng. RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OFUNDERCOOLED Fe82B17Si1 ALLOY. Acta Metall Sin, 2014, 50(7): 795-801.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00813      或      https://www.ams.org.cn/CN/Y2014/V50/I7/795

[1] Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H. Acta Metall Sin, 2005; 41: 1053
(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)
[2] Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643
[3] Leonhardt M, Loser W, Lindenkreuz H G. Mater Sci Eng, 1999; A271: 31
[4] Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558
[5] Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987
[6] Merz G D, Kattamis T Z. Metall Trans, 1977; 8A: 295
[7] Croker M N, Fidler R S, Smith R W. Proc Roy Soc Lond, 1973; 335A: 15
[8] Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Eur Phys Lett, 2006; 74: 281
[9] Lu Y P, Liu F, Yang G C, Yang C L, Zhou Y H. Appl Phys Lett, 2006; 89: 241902
[10] Wei B, Yang G C, Zhou Y H. Acta Metall, 1991; 39: 1249
[11] Chu M G, Shionara Y, Flemings M C. Metall Trans, 1984; 15A: 1303
[12] Murty Y, Kattamis T Z. J Cryst Growth, 1974; 22: 219
[13] Wang H P, Yao W J, Wei B. Appl Phys Lett, 2006; 89: 201905
[14] Bottinger W J, Aziz M J. Acta Metall, 1989; 37: 3379
[15] Battezzati L, Antonione C, Baricco M. J Alloys Compd, 1997; 247: 164
[16] Loser W, Hermann R, Leonhardt R. Mater Sci Eng, 1997; A224: 53
[17] Lu Y P, Yang G C, Yang C L,Wang H P, Zhou Y H. Progress Nat Sci, 2006; 16: 287
[18] Duhaj P, ?vec P. Mater Sci Eng, 1997; A226-228: 245
[19] Schroers J, Holland-Moritz D, Herlach D M. Mater Sci Eng, 1997; A226-228: 990
[20] Luborsky F E. Amorphous Metallic Alloys. London: Butterworth & Co., 1983: 381
[21] Zhang Z Z. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 1993
(张振忠. 西北工业大学博士学位论文, 西安, 1993)
[22] Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[23] Emadi D, Whiting L, Djurdjevic M, Kierkus W T, Sokolowski J. MJoM, 2004; 10: 91
[24] Gandin Ch-A, Mosbah S, Volkmann Th, Herlach D M. Acta Mater, 2008; 56: 3023
[25] Yang W, Liu F, Liu H, Wang H F, Yang G C, Zhou Y H. J Cryst Growth, 2009; 311: 3225
[26] Liu F, Sommer F, Mittemeijer E J. J Mater Sci, 2004; 39: 1621
[27] Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[28] Christian J W. The Theory of Transformation in Metals and Alloys. OXford: Pergamon Press, 2002: 623
[29] Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[30] Valiev R Z, Korasilnikov N A, Tzenev N K. Mater Sci Eng, 1991; A137: 35
[31] Zhang Z Z, Song G S, Yang G C. Progress Nat Sci, 2000; 10: 560
(张振忠, 宋广生, 杨根仓. 自然科学进展, 2000; 10: 560)
[32] Fras E, Lopez H F. Metall Mater Trans, 1999; 30B: 927
[33] Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[34] Raghavan V. Phase Diagrams of Ternary Iron Alloys Part 6A. New Delhi: Electronic Publishing Center, Green Park Extension. 1993: 11, 406
[35] Boettinger W J, Coriell S R, Trivedi R. Principles Technol, 1988; (IV): 13
[1] 李芸, 刘连杰, 李新明, 李金富. 过冷Co75B25合金的凝固[J]. 金属学报, 2018, 54(8): 1165-1170.
[2] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[3] 樊丹丹, 许军锋, 钟亚男, 坚增运. 过热温度和冷却速率对过冷Ti熔体凝固过程的影响[J]. 金属学报, 2018, 54(6): 844-850.
[4] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[5] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[6] 坚增运, 徐涛, 许军锋, 朱满, 常芳娥. 熔体-结晶相固-液界面能的研究进展[J]. 金属学报, 2018, 54(5): 766-772.
[7] 朱姜蕾, 王庆, 王海鹏. 深过冷液态金属Cu的热物理性质和原子分布[J]. 金属学报, 2017, 53(8): 1018-1024.
[8] 严军辉,坚增运,朱满,常芳娥,许军锋. 深过冷Al-70%Si合金的凝固特性与微观组织*[J]. 金属学报, 2016, 52(8): 931-937.
[9] 文强, 坚增运, 朱满, 常芳娥, 党博. RE对过共晶Al-80%Si合金凝固特性的影响*[J]. 金属学报, 2014, 50(5): 610-618.
[10] 李小飞,郭喜平. 定向凝固Nb-Ti-Si基超高温合金的共晶组织形貌演化[J]. 金属学报, 2013, 49(7): 853-862.
[11] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[12] 胡锐,柳翊,张铁邦,寇宏超,李金山. TiAl基合金非平衡凝固过程中的相选择及凝固特征[J]. 金属学报, 2013, 49(11): 1295-1302.
[13] 袁超,周兰章,李谷松,郭建亭. 高性能NiAl共晶合金JJ­­—3[J]. 金属学报, 2013, 49(11): 1347-1355.
[14] 王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
[15] 常芳娥 赵志伟 朱满 李娜 方雯 董广志 坚增运. 深过冷Ni-21.4%Si共晶合金的凝固特性研究[J]. 金属学报, 2012, 48(7): 875-881.