Please wait a minute...
金属学报  2024, Vol. 60 Issue (7): 947-956    DOI: 10.11900/0412.1961.2022.00200
  研究论文 本期目录 | 过刊浏览 |
四元Co-Ni-Cr-Al合金高温氧化模式及其转变机理
吕云蕾1, 任延杰1,2(), 冯抗抗1, 周梦妮1, 王文3, 陈荐1, 牛焱1()
1 长沙理工大学 能源与动力工程学院 长沙 410076
2 浙江科技大学 机械与能源工程学院 杭州 310023
3 中国科学院金属研究所 沈阳 110016
High Temperature Oxidation Mode and Transformation Mechanism of Quaternary Co-Ni-Cr-Al Alloys
LV Yunlei1, REN Yanjie1,2(), FENG Kangkang1, ZHOU Mengni1, WANG Wen3, CHEN Jian1, NIU Yan1()
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

吕云蕾, 任延杰, 冯抗抗, 周梦妮, 王文, 陈荐, 牛焱. 四元Co-Ni-Cr-Al合金高温氧化模式及其转变机理[J]. 金属学报, 2024, 60(7): 947-956.
Yunlei LV, Yanjie REN, Kangkang FENG, Mengni ZHOU, Wen WANG, Jian CHEN, Yan NIU. High Temperature Oxidation Mode and Transformation Mechanism of Quaternary Co-Ni-Cr-Al Alloys[J]. Acta Metall Sin, 2024, 60(7): 947-956.

全文: PDF(4216 KB)   HTML
摘要: 

为深入探究Cr、Al元素对Co-Ni合金高温氧化行为的影响,本工作研究了四元Co-20Ni-8Cr-xAl (x = 3、5,质量分数,%)合金在纯氧中800、900、1000和1100℃下的氧化行为。氧化后,2种合金表面均生成了复杂的氧化膜。2种合金在800、900和1000℃下均有不连续Al2O3膜生成,1100℃下仅在Co-20Ni-8Cr-5Al表面生成Al2O3。温度从800℃升到900℃,合金的氧化速率均提高,而温度从1000℃升高到1100℃后,2种合金的氧化速率均下降。合金中Al含量由3%增加到5%,Co-Ni-Cr-Al合金的氧化速率随之下降,但5%的Al含量仍不足以令合金表面生成保护性的Al2O3膜。与Al含量相同的Co-Ni-Al三元合金相比,Cr和Al的同时存在有利于降低四元Co-Ni-Cr-Al合金的氧化速率。

关键词 Co-Ni-Cr-Al合金高温氧化氧化动力学保护性氧化膜    
Abstract

The addition of Ni to cobalt-based alloys can form the γ′ phase, which can significantly improve their mechanical properties and high-temperature oxidation resistance. The oxidation behavior of quaternary Co-20Ni-8Cr-xAl (x = 3 or 5, mass fraction, %) alloys was investigated in 1.013 × 105 Pa O2 at 800, 900, 1000, and 1100oC. Also, the effects of Al and/or Cr contents and temperature on the oxidation properties of the alloys were explored by analyzing the oxidation kinetics of the alloys and the cross-sectional morphology characteristics of the scales, revealing the oxidation mechanism of these alloys. After oxidation, both the alloys formed complex scales with irregular thickness and composition. Alumina scales were generated for each alloy at 800, 900, and 1000oC and only for Co-20Ni-8Cr-5Al at 1100oC. The increase in temperature from 800oC to 900oC has a negative effect on the oxidation resistance, resulting in greatly accelerated oxidation rates. Conversely, that from 1000oC to 1100oC has a positive effect on the oxidation of the two alloys, causing a decrease in the oxidation rate. The oxidation rate of the Co-Ni-Cr-Al alloy decreases when the Al content in the alloy is increased from 3% to 5%, but 5% is still not sufficient to form continuous alumina scales. The simultaneous presence of Cr and Al is beneficial to reducing the oxidation rate of the quaternary Co-Ni-Cr-Al alloys compared with the ternary Co-Ni-Al alloy with the same Al content.

Key wordsCo-Ni-Cr-Al alloy    high temperature oxidation    oxidation kinetics    protective scale
收稿日期: 2022-04-27     
ZTFLH:  TB31  
基金资助:国家自然科学基金项目(52171066);国家自然科学基金项目(51771034);湖南省自然科学基金项目(2020JJ4610);湖南省研究生科研创新项目(CX20200871)
通讯作者: 任延杰,yjren@csust.edu.cn,主要从事动力设备的腐蚀与防护研究;
牛 焱,yniu@csust.edu.cn,主要从事金属的高温腐蚀与防护研究
Corresponding author: REN Yanjie, professor, Tel: 13657310308, E-mail: yjren@csust.edu.cn;
作者简介: 吕云蕾,女,1995年生,硕士生
Nominal (mass fraction / %)Nominal (atomic fraction / %)Actual (mass fraction / %)
Co-20Ni-8Cr-3AlCo-19.27Ni-8.65Cr-6.23AlCo-20.1Ni-7.99Cr-3.02Al
Co-20Ni-8Cr-5AlCo-18.94Ni-8.38Cr-10.26AlCo-20.2Ni-7.92Cr-5.03Al
表1  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金的设计成分和实际成分
图1  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金在800、900、1000和1100℃下1.013 × 105 Pa O2中氧化20 h的动力学曲线
图2  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金在800、900、1000和1100℃下1.013 × 105 Pa O2中氧化20 h的动力学曲线
图3  Co-20Ni-8Cr-3Al合金在800℃、1.013 × 105 Pa O2中氧化24 h的截面形貌和相应的元素分布
图4  Co-20Ni-8Cr-3Al合金在900℃、1.013 × 105 Pa O2中氧化24 h的截面形貌
图5  Co-20Ni-8Cr-3Al合金在1000和1100℃下1.013 × 105 Pa O2中氧化20 h的截面形貌
图6  Co-20Ni-8Cr-5Al合金在800和900℃下1.013 × 105 Pa O2中氧化24 h的截面形貌
图7  Co-20Ni-8Cr-5Al合金在1000和1100℃下1.013 × 105 Pa O2中氧化20 h的截面形貌
图8  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金在800和900℃下1.013 × 105 Pa O2中氧化24 h后的XRD谱
图9  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金在1000和1100℃ 1.013 × 105 Pa O2中氧化20 h后的XRD谱
Type of scaleOxidation product
IMO (thick), Al2O3, Cr2O3, spinel
IIMO (thin), Al2O3, Cr2O3, spinel
IIIAl2O3, Cr2O3, spinel
IVAl2O3
表2  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金4种类型氧化膜的氧化产物
Temperature / oCCo-20Ni-8Cr-3AlCo-20Ni-8Cr-5Al
800Type II + type IVType II + type IV
900Type IIType II
1000Type IIType II
1100Type IIType II + type IV
表3  Co-20Ni-8Cr-3Al和Co-20Ni-8Cr-5Al合金在800、900、1000和1100℃下产生的氧化膜结构类型
图10  Co-20Ni-8Cr-xAl四元合金与Co-20Ni-xAl三元合金[31]在800、900和1000℃下1.013 × 105 Pa O2中氧化20 h的动力学曲线的比较
1 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd Ed., Amsterdam: Elsevier, 2016: 1
2 Lai G Y. High-Temperature Corrosion and Materials Applications [M]. ASM International, 2007: 6
3 Yuan F H, Sun X F, Guan H R, et al. Cyclic oxidation behavior of a cobalt-base superalloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 115
3 袁福河, 孙晓峰, 管恒荣 等. 钴基高温合金的循环氧化行为研究 [J]. 中国腐蚀与防护学报, 2002, 22: 115
4 Hou P Y. Impurity effects on alumina scale growth [J]. J. Am. Ceram. Soc., 2003, 86: 660
5 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
6 Wallwork G R, Hed A Z. Mapping of the oxidation products in the ternary Co-Cr-Al system [J]. Oxid. Met., 1971, 3: 213
7 Wallwork G R, Hed A Z. Selection of an alloy composition in the ternary Co-Cr-Al system for oxidation resistance [J]. Oxid. Met., 1971, 3: 243
8 Wood G C, Stott F H. The influence of aluminum additions on the oxidation of Co-Cr alloys at 1000 and 1200oC [J]. Oxid. Met., 1971, 3: 365
9 Irving G N, Stringer J, Whittle D P. The oxidation behavior of Co-Cr-Al alloys at 1000oC [J]. Corrosion, 1977, 33: 56
10 Allam I M, Whittle D P, Stringer J. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met., 1978, 12: 35
11 Stott F H, Wood G C, Hobby M G. A comparison of the oxidation behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al alloys [J]. Oxid. Met., 1971, 3: 103
12 Stott F H, Wood G C. The mechanism of oxidation of Ni-Cr-Al alloys at 1000oC-1200oC [J]. Corros. Sci., 1971, 11: 799
13 Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
14 Kvernes I A, Kofstad P. The oxidation behavior of some Ni-Cr-Al alloys at high temperatures [J]. Mater. Trans., 1972, 3B: 1511
15 Nijdam T J, Jeurgens L P H, Sloof W G. Effect of partial oxygen pressure on the initial stages of high-temperature oxidation of γ-NiCrAl alloys [J]. Mater. High Temp., 2003, 20: 311
16 Nijdam T J, Jeurgens L P H, Sloof W G. Modelling the thermal oxidation of ternary alloys—Compositional changes in the alloy and the development of oxide phases [J]. Acta Mater., 2003, 51: 5295
17 Nijdam T J, Jeurgens L P H, Sloof W G. Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: Experiment versus model predictions [J]. Acta Mater., 2005, 53: 1643
18 Nijdam T J, Van Der Pers N M, Sloof W G. Oxide phase development upon high temperature oxidation of γ-NiCrAl alloys [J]. Mater. Corros., 2006, 57: 269
19 Wang E P, Liu H F, Guo W, et al. Effect of pre-oxidation temperature on high-temperature cyclic oxidation resistance of Ni-15Cr-5Al-5Si alloy [J]. Mater. Mech. Eng., 2019, 43(2): 39
doi: 10.11973/jxgccl201902008
19 王二鹏, 刘海飞, 郭 文 等. 预氧化温度对Ni-15Cr-5Al-5Si合金抗高温循环氧化性能的影响 [J]. 机械工程材料, 2019, 43(2): 39
doi: 10.11973/jxgccl201902008
20 Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x=0, 5, 10, 15 at.%) alloys in 1 atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
21 Zhang X J, Wang S Y, Gesmundo F, et al. The effect of Cr on the oxidation of Ni-10 at% Al in 1 atm O2 at 900-1000oC [J]. Oxid. Met., 2006, 65: 151
22 Wood G C. Fundamental factors determining the mode of scaling of heat-resistant alloys [J]. Werkst. Corros., 1971, 22: 491
23 Weiser M, Galetz M C, Chater R J, et al. Growth mechanisms of oxide scales on two-phase Co/Ni-base model alloys between 800oC and 900oC [J]. J. Electrochem. Soc., 2020, 167: 021504
24 Weiser M, Galetz M C, Zschau H E, et al. Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900oC [J]. Corros. Sci., 2019, 156: 84
25 Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ′-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
26 Zenk C H, Neumeier S, Engl N M, et al. Intermediate Co/Ni-base model superalloys—Thermophysical properties, creep and oxidation [J]. Scr. Mater., 2016, 112: 83
27 Bastow B D, Whittle D P, Wood G C. Diffusion-controlled growth of solid solution scales on nickel-cobalt alloys [J]. Corros. Sci., 1976, 16: 57
28 Seraffon M, Simms N J, Sumner J, et al. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas turbine conditions [J]. Surf. Coat. Technol., 2011, 206: 1529
29 Seraffon M, Simms N J, Sumner J, et al. Oxidation behaviour of NiCrAl and NiCoCrAl bond coatings under industrial gas turbine conditions [J]. Oxid. Met., 2014, 81: 203
30 Ren Y J, Dai T, Guo X H, et al. Scaling behavior of four Co-20Ni-xCr-yAl (x = 8, 15 wt.%; y = 3, 5 wt.%) alloys exposed to 1 atm O2 at 1000oC and 1100oC [J]. Corros. Sci., 2021, 191: 109719
31 Ren Y J, Lv Y L, Dai T, et al. Oxidation behavior of ternary alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 atmosphere at 800-1000oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 995
31 任延杰, 吕云蕾, 戴 汀 等. 三元Co-Ni-Al合金在800~1000℃纯氧中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 995
doi: 10.11902/1005.4537.2021.264
[1] 蔡杰, 高杰, 花银群, 叶云霞, 关庆丰, 张小锋. 强流脉冲电子束辐照对低压等离子喷涂 MCrAlY涂层组织与性能的影响[J]. 金属学报, 2024, 60(4): 495-508.
[2] 刘丞济, 孙文瑶, 陈明辉, 王福会. 放电等离子烧结Ni20Cr-xAl合金的高温氧化行为[J]. 金属学报, 2024, 60(4): 485-494.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[6] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[7] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[8] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[9] 高博, 王磊, 宋秀, 刘杨, 杨舒宇, 千叶晶彦. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响[J]. 金属学报, 2019, 55(10): 1273-1281.
[10] 白银, 刘正东, 谢建新, 包汉生, 陈正宗. 预氧化处理对G115钢高温蒸气氧化行为的影响[J]. 金属学报, 2018, 54(6): 895-904.
[11] 张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
[12] 曾宇翔,郭喜平,乔彦强,聂仲毅. Zr含量对Nb-Ti-Si基超高温合金组织及抗氧化性能的影响[J]. 金属学报, 2015, 51(9): 1049-1058.
[13] 骆蕾,沈以赴,李博, 胡伟叶. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49(8): 996-1002.
[14] 于大千,卢旭阳,马军,姜肃猛,刘山川,宫骏,孙超. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48(6): 759-768.
[15] 肖旋 许辉 秦学智 郭永安 郭建亭 周兰章. 3种铸造镍基高温合金热疲劳行为研究[J]. 金属学报, 2011, 47(9): 1129-1134.