Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 484-490    DOI: 10.11900/0412.1961.2015.00488
  论文 本期目录 | 过刊浏览 |
固溶处理对CoCrW合金组织及耐磨性能的影响*
何波1,聂庆武1,张洪宇2,韦华2()
1 沈阳航空航天大学机电工程学院, 沈阳 110136
2 中国科学院金属研究所, 沈阳 110016
EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS
Bo HE1,Qingwu NIE1,Hongyu Zhang2,Hua WEI2()
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1384 KB)   HTML
  
摘要: 

以铸造CoCrW合金为研究对象, 通过XRD, SEM和EDS分析以及硬度测试和室温耐磨实验, 研究了不同温度的固溶处理对该合金的组织及耐磨性能的影响. 结果表明, 铸态和固溶态CoCrW合金组织均由M23C6, M6C和γ-Co基体3种相组成, 但固溶后合金中碳化物的大小、形貌及分布发生明显变化. 固溶后合金中起强化作用的碳化物大量溶解, 使合金硬度和耐磨性能降低; 随着固溶温度的升高, 部分碳化物中的Cr, W等合金元素大量固溶到基体中, 提高了基体的强度, 使合金的硬度和耐磨性能有所提高; 铸态和固溶态CoCrW合金的磨损机制均为磨粒磨损、黏着磨损和氧化磨损的共同作用.

关键词 CoCrW合金固溶处理硬度耐磨性能    
Abstract

CoCrW alloy is a kind of stellite alloy, which has high strength, good wear resistance, and is widely used in aviation industry, nuclear industry and other fields. For a long time, the CoCrW alloy is mainly used as coating to have an effect on wear and the corrosion resistance. With the development of the industry, the conventional cast CoCrW alloy has been widely studied. The mechanical properties of the cast CoCrW alloy can be changed by heat treatment, which is of high hardness and great brittleness. In this work, hardness and wear-resistant properties of the CoCrW alloys as-cast and after solution treatment were studied by combining XRD, SEM, EDS, hardness test and wear resistance test, and effects of the solution temperature on the microstructure and wear-resistant properties were also investigated. The results showed that the microstructures of the CoCrW alloys as-cast and after solution treatment were both composed of M23C6, M6C and γ-Co matrix, but the size, morphology and distribution of carbides occurred in the alloy changed obviously by solution treatment. The dissolution of a large amount of carbides in the alloy after solution treatment was mainly responsible for the decrease in hardness and wear resistance of the alloy compared with that of the as-cast one. With the increase of the solution temperature, the Cr, W and other alloying elements in the carbides were dissolved into the γ-Co matrix so as to strengthen the matrix resulting in the improvement of the hardness and the associated wear resistance of the alloy. The mechanism that controlling the wear-resistant property of CoCrW alloys as-cast and after solution treatment was the interaction of abrasive wear, adhesive wear and oxidation wear.

Key wordsCoCrW alloy    solution treatment    hardness    wear-resistant property
收稿日期: 2015-09-17     
基金资助:* 国家自然科学基金项目51201161和辽宁省自然科学基金项目2013024011资助

引用本文:

何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
Bo HE, Qingwu NIE, Hongyu Zhang, Hua WEI. EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS. Acta Metall Sin, 2016, 52(4): 484-490.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2015.00488      或      https://www.ams.org.cn/CN/Y2016/V52/I4/484

图1  铸态及固溶态CoCrW合金微观组织和EDS分析
图2  铸态和固溶态CoCrW合金的XRD谱
图3  铸态和固溶态CoCrW合金中各相的面积分数
图4  铸态和固溶态CoCrW合金的摩擦系数曲线
图5  铸态及固溶态CoCrW合金磨痕的三维形貌和SEM像
图6  铸态及1250 ℃固溶态CoCrW合金磨痕表面形貌及EDS
[1] Alireza K, Liu R, Liang M, Yang Q.Mater Des, 2014; 56: 487
[2] Yamanaka K, Mori M, Kuramoto K J, Chiba A.Mater Des, 2014; 55: 987
[3] Yamanaka K, Mori M, Chiba A.Mater Sci Eng, 2014; C40: 127
[4] Malayoglu U, Neville A.Wear, 2003; 255: 181
[5] Wang Q L, Zhang L, Dong J D, Sun Y M.J Xuzhou Inst Technol, 2010; 25(3): 7
[5] (王庆良, 张磊, 董建东, 孙彦敏. 徐州工程学院学报, 2010; 25(3): 7)
[6] Zhong M L, Liu W J.Acta Metall Sin, 2002; 38: 495
[6] (钟敏霖, 刘文今. 金属学报, 2002; 38: 495)
[7] Li F, Hu K A, Li J L, Zhao B Y.Wear, 2002; 249: 877
[8] Rosalbino F, Scavino G.Electrochim Acta, 2013; 111: 656
[9] Yang Z Y.Rare Met, 2004; 23: 53
[10] Xu X Y, Xu B S, Liu W J, Liu S C, Zhou Z R.Rare Met Mater Eng, 2003; 32: 855
[10] (徐向阳, 徐滨士, 刘文今, 刘世参, 周仲荣. 稀有金属材料与工程, 2003; 32: 855)
[11] Liu X B, Liu H Q, Meng X J, Sun C F, Wang M D, Qi L H, Shi G L, Wu S H.Mater Chem Phys, 2014; 143: 616
[12] Hou Q Y, Gao J S, Zhou F.Surf Coat Technol, 2005; 194: 238
[13] Wang L C, Li D Y.Wear, 2003; 255: 535
[14] Gupta R K, Karthikeyan M K, Bhalia D N, Ghosh B R, Sinha P P.Met Sci Heat Treat, 2008; 50: 175
[15] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J.Acta Metall Sin, 2009; 45: 1013
[15] (吴朝锋, 马明星, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1013)
[16] Da Silva W S, Souza R M, Mello J D B, Goldenstein H.Wear, 2011; 271: 1819
[17] Li J N, Gong S L, Wang J, Shan F H, Li H X, Wu B.Acta Metall Sin, 2014; 50: 547
[17] (李嘉宁, 巩水利, 王娟, 单飞虎, 李怀学, 吴冰. 金属学报, 2014; 50: 547)
[18] Cai Z B, Zhu M H, Liu J, Xu Y, Yu J, Zhou Z R.Lubr Eng, 2006; (4): 26
[18] (蔡振兵, 朱旻昊, 刘军, 徐轶, 俞佳, 周仲荣. 润滑与密封, 2006; (4): 26)
[19] Liu H C, Pang Y X, Guo Y J.Lubr Eng, 2001; (2): 39
[19] (刘厚才, 庞佑霞, 郭源君. 润滑与密封, 2001; (2): 39)
[20] Zhang Z Z, Xue Q J, Liu W M, Shen W C.Tribol Int, 1998; 31: 361
[21] Zhang Z Y, Lu X C, Han B L, Luo J B.Mater Sci Eng, 2007; A444: 92
[22] Zhou B, Shi S F, Wang X Y.Rare Met Mater Eng, 2006; 35: 105
[22] (周炳, 史胜凤, 王小祥. 稀有金属材料与工程, 2006; 35: 105)
[23] Shin J C, Doh J M, Yoon J K, Lee D Y, Kim J S.Surf Coat Technol, 2003; 166: 117
[24] Zeng M Q, Zhang Y, Ouyang L Z, Luo K C, Zhu M.Acta Metall Sin, 2002; 38: 814
[24] (曾美琴, 张耀, 欧阳柳章, 罗堪昌, 朱敏. 金属学报, 2002; 38: 814)
[25] Xu H B, Jian X G, Wu J S, Zhang J G.Acta Metall Sin, 2001; 37: 889
[25] (徐寒冰, 简小刚, 吴建生, 章靖国. 金属学报, 2001; 37: 889)
[1] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[2] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[3] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[4] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[5] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[6] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[7] 李冬梅, 姜贝贝, 李晓娜, 王清, 董闯. 高硬导电Cu-Ni-Si合金成分规律[J]. 金属学报, 2019, 55(10): 1291-1301.
[8] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[9] 陈胜虎, 戎利建. Ni-Fe-Cr合金固溶处理后的组织变化及其对性能的影响[J]. 金属学报, 2018, 54(3): 385-392.
[10] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[11] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[12] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[15] 刘进,劳远侠,汪渊. Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响[J]. 金属学报, 2017, 53(4): 465-471.