Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 484-490    DOI: 10.11900/0412.1961.2015.00488
  论文 本期目录 | 过刊浏览 |
固溶处理对CoCrW合金组织及耐磨性能的影响*
何波1,聂庆武1,张洪宇2,韦华2()
1 沈阳航空航天大学机电工程学院, 沈阳 110136
2 中国科学院金属研究所, 沈阳 110016
EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS
Bo HE1,Qingwu NIE1,Hongyu Zhang2,Hua WEI2()
1 School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

何波,聂庆武,张洪宇,韦华. 固溶处理对CoCrW合金组织及耐磨性能的影响*[J]. 金属学报, 2016, 52(4): 484-490.
Bo HE, Qingwu NIE, Hongyu Zhang, Hua WEI. EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS[J]. Acta Metall Sin, 2016, 52(4): 484-490.

全文: PDF(1384 KB)   HTML
  
摘要: 

以铸造CoCrW合金为研究对象, 通过XRD, SEM和EDS分析以及硬度测试和室温耐磨实验, 研究了不同温度的固溶处理对该合金的组织及耐磨性能的影响. 结果表明, 铸态和固溶态CoCrW合金组织均由M23C6, M6C和γ-Co基体3种相组成, 但固溶后合金中碳化物的大小、形貌及分布发生明显变化. 固溶后合金中起强化作用的碳化物大量溶解, 使合金硬度和耐磨性能降低; 随着固溶温度的升高, 部分碳化物中的Cr, W等合金元素大量固溶到基体中, 提高了基体的强度, 使合金的硬度和耐磨性能有所提高; 铸态和固溶态CoCrW合金的磨损机制均为磨粒磨损、黏着磨损和氧化磨损的共同作用.

关键词 CoCrW合金固溶处理硬度耐磨性能    
Abstract

CoCrW alloy is a kind of stellite alloy, which has high strength, good wear resistance, and is widely used in aviation industry, nuclear industry and other fields. For a long time, the CoCrW alloy is mainly used as coating to have an effect on wear and the corrosion resistance. With the development of the industry, the conventional cast CoCrW alloy has been widely studied. The mechanical properties of the cast CoCrW alloy can be changed by heat treatment, which is of high hardness and great brittleness. In this work, hardness and wear-resistant properties of the CoCrW alloys as-cast and after solution treatment were studied by combining XRD, SEM, EDS, hardness test and wear resistance test, and effects of the solution temperature on the microstructure and wear-resistant properties were also investigated. The results showed that the microstructures of the CoCrW alloys as-cast and after solution treatment were both composed of M23C6, M6C and γ-Co matrix, but the size, morphology and distribution of carbides occurred in the alloy changed obviously by solution treatment. The dissolution of a large amount of carbides in the alloy after solution treatment was mainly responsible for the decrease in hardness and wear resistance of the alloy compared with that of the as-cast one. With the increase of the solution temperature, the Cr, W and other alloying elements in the carbides were dissolved into the γ-Co matrix so as to strengthen the matrix resulting in the improvement of the hardness and the associated wear resistance of the alloy. The mechanism that controlling the wear-resistant property of CoCrW alloys as-cast and after solution treatment was the interaction of abrasive wear, adhesive wear and oxidation wear.

Key wordsCoCrW alloy    solution treatment    hardness    wear-resistant property
收稿日期: 2015-09-17     
基金资助:* 国家自然科学基金项目51201161和辽宁省自然科学基金项目2013024011资助
图1  铸态及固溶态CoCrW合金微观组织和EDS分析
图2  铸态和固溶态CoCrW合金的XRD谱
图3  铸态和固溶态CoCrW合金中各相的面积分数
图4  铸态和固溶态CoCrW合金的摩擦系数曲线
图5  铸态及固溶态CoCrW合金磨痕的三维形貌和SEM像
图6  铸态及1250 ℃固溶态CoCrW合金磨痕表面形貌及EDS
[1] Alireza K, Liu R, Liang M, Yang Q.Mater Des, 2014; 56: 487
[2] Yamanaka K, Mori M, Kuramoto K J, Chiba A.Mater Des, 2014; 55: 987
[3] Yamanaka K, Mori M, Chiba A.Mater Sci Eng, 2014; C40: 127
[4] Malayoglu U, Neville A.Wear, 2003; 255: 181
[5] Wang Q L, Zhang L, Dong J D, Sun Y M.J Xuzhou Inst Technol, 2010; 25(3): 7
[5] (王庆良, 张磊, 董建东, 孙彦敏. 徐州工程学院学报, 2010; 25(3): 7)
[6] Zhong M L, Liu W J.Acta Metall Sin, 2002; 38: 495
[6] (钟敏霖, 刘文今. 金属学报, 2002; 38: 495)
[7] Li F, Hu K A, Li J L, Zhao B Y.Wear, 2002; 249: 877
[8] Rosalbino F, Scavino G.Electrochim Acta, 2013; 111: 656
[9] Yang Z Y.Rare Met, 2004; 23: 53
[10] Xu X Y, Xu B S, Liu W J, Liu S C, Zhou Z R.Rare Met Mater Eng, 2003; 32: 855
[10] (徐向阳, 徐滨士, 刘文今, 刘世参, 周仲荣. 稀有金属材料与工程, 2003; 32: 855)
[11] Liu X B, Liu H Q, Meng X J, Sun C F, Wang M D, Qi L H, Shi G L, Wu S H.Mater Chem Phys, 2014; 143: 616
[12] Hou Q Y, Gao J S, Zhou F.Surf Coat Technol, 2005; 194: 238
[13] Wang L C, Li D Y.Wear, 2003; 255: 535
[14] Gupta R K, Karthikeyan M K, Bhalia D N, Ghosh B R, Sinha P P.Met Sci Heat Treat, 2008; 50: 175
[15] Wu C F, Ma M X, Liu W J, Zhong M L, Zhang W M, Zhang H J.Acta Metall Sin, 2009; 45: 1013
[15] (吴朝锋, 马明星, 刘文今, 钟敏霖, 张伟明, 张红军. 金属学报, 2009; 45: 1013)
[16] Da Silva W S, Souza R M, Mello J D B, Goldenstein H.Wear, 2011; 271: 1819
[17] Li J N, Gong S L, Wang J, Shan F H, Li H X, Wu B.Acta Metall Sin, 2014; 50: 547
[17] (李嘉宁, 巩水利, 王娟, 单飞虎, 李怀学, 吴冰. 金属学报, 2014; 50: 547)
[18] Cai Z B, Zhu M H, Liu J, Xu Y, Yu J, Zhou Z R.Lubr Eng, 2006; (4): 26
[18] (蔡振兵, 朱旻昊, 刘军, 徐轶, 俞佳, 周仲荣. 润滑与密封, 2006; (4): 26)
[19] Liu H C, Pang Y X, Guo Y J.Lubr Eng, 2001; (2): 39
[19] (刘厚才, 庞佑霞, 郭源君. 润滑与密封, 2001; (2): 39)
[20] Zhang Z Z, Xue Q J, Liu W M, Shen W C.Tribol Int, 1998; 31: 361
[21] Zhang Z Y, Lu X C, Han B L, Luo J B.Mater Sci Eng, 2007; A444: 92
[22] Zhou B, Shi S F, Wang X Y.Rare Met Mater Eng, 2006; 35: 105
[22] (周炳, 史胜凤, 王小祥. 稀有金属材料与工程, 2006; 35: 105)
[23] Shin J C, Doh J M, Yoon J K, Lee D Y, Kim J S.Surf Coat Technol, 2003; 166: 117
[24] Zeng M Q, Zhang Y, Ouyang L Z, Luo K C, Zhu M.Acta Metall Sin, 2002; 38: 814
[24] (曾美琴, 张耀, 欧阳柳章, 罗堪昌, 朱敏. 金属学报, 2002; 38: 814)
[25] Xu H B, Jian X G, Wu J S, Zhang J G.Acta Metall Sin, 2001; 37: 889
[25] (徐寒冰, 简小刚, 吴建生, 章靖国. 金属学报, 2001; 37: 889)
[1] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.
[4] 项兆龙, 张林, XIN Yan, 安佰灵, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, 王恩刚. Cr含量对FeCrCoSi永磁合金调幅分解组织及其性能的影响[J]. 金属学报, 2022, 58(1): 103-113.
[5] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[7] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[8] 张林, 郭晓, 高建文, 邓安元, 王恩刚. 电磁搅拌对TiB2颗粒增强钢组织和力学性能的影响[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] 曹铁山, 赵津艺, 程从前, 孟宪明, 赵杰. 冷变形和固溶温度对HR3C钢中σ相析出行为的影响[J]. 金属学报, 2020, 56(5): 673-682.
[10] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[11] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[12] 刘艳梅, 王铁钢, 郭玉垚, 柯培玲, 蒙德强, 张纪福. Ti-B-N纳米复合涂层的设计、制备及性能[J]. 金属学报, 2020, 56(11): 1521-1529.
[13] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[14] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[15] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.