|
|
Cu含量对管线钢耐微生物腐蚀性能的影响 |
曾云鹏1,2, 严伟2,3( ), 史显波2,3, 闫茂成2, 单以银2,3, 杨柯2 |
1 中国科学技术大学 材料科学与工程学院 沈阳 110016 2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Effect of Copper Content on the MIC Resistance in Pipeline Steel |
ZENG Yunpeng1,2, YAN Wei2,3( ), SHI Xianbo2,3, YAN Maocheng2, SHAN Yiyin2,3, YANG Ke2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.
Yunpeng ZENG,
Wei YAN,
Xianbo SHI,
Maocheng YAN,
Yiyin SHAN,
Ke YANG.
Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. Acta Metall Sin, 2024, 60(1): 43-56.
1 |
Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
doi: 10.1007/BF03028224
|
2 |
Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation [J]. Corros. Sci., 2008, 50: 2816
doi: 10.1016/j.corsci.2008.07.008
|
3 |
Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
|
4 |
Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
doi: 10.1016/j.oceaneng.2013.05.005
|
5 |
Hashemi S J, Bak N, Khan F, et al. Bibliometric analysis of microbiologically influenced corrosion (MIC) of oil and gas engineering systems [J]. Corrosion, 2017, 74: 468
doi: 10.5006/2620
|
6 |
Conley S, Franco G, Faloona I, et al. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA [J]. Science, 2016, 351: 1317
doi: 10.1126/science.aaf2348
pmid: 26917596
|
7 |
Jacobson G A. Corrosion at Prudhoe Bay—A lesson on the line [J]. Mater. Perform., 2007, 46: 26
|
8 |
Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
|
9 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
|
10 |
Lv M Y, Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. BioTechnol., 2018, 17: 431
doi: 10.1007/s11157-018-9473-2
|
11 |
Flemming H C, Wingender J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
|
12 |
Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
|
13 |
Costerton J W, Ellis B, Lam K, et al. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria [J]. Antimicrob. Agents Chemother., 1994, 38: 2803
doi: 10.1128/AAC.38.12.2803
pmid: 7695266
|
14 |
Yu H B, Li Z M, Xia Y Y, et al. Effect of copper addition in carbon steel on biocorrosion by sulfate-reducing bacteria in solution [J]. Anti-Corros. Methods Mater., 2021, 68: 302
|
15 |
Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
|
15 |
史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
|
16 |
Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
|
17 |
Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
|
18 |
Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
|
19 |
Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
|
19 |
吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
doi: 10.11902/1005.4537.2014.044
|
20 |
Gabrielli C, Keddam M, Takenouti H, et al. The relationship between the impedance of corroding electrode and its polarization resistance determined by a linear voltage sweep technique [J]. Electrochim. Acta, 1979, 24: 61
doi: 10.1016/0013-4686(79)80042-0
|
21 |
Yu L B, Yan M C, Ma J, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568
|
21 |
于利宝, 闫茂成, 马 健 等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568
|
22 |
Xu J, Sun C, Yan M C, et al. Variations of microenvironments with and without SRB for steel Q 235 under a simulated disbonded coating [J]. Ind. Eng. Chem. Res., 2013, 52: 12838
doi: 10.1021/ie303335n
|
23 |
Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
doi: 10.1016/j.corsci.2013.04.058
|
24 |
Hong J H, Lee S H, Kim J G, et al. Corrosion behaviour of copper containing low alloy steels in sulphuric acid [J]. Corros. Sci., 2012, 54: 174
doi: 10.1016/j.corsci.2011.09.012
|
25 |
Hermas A A, Ogura K, Adachi T. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures [J]. Electrochim. Acta, 1995, 40: 837
doi: 10.1016/0013-4686(94)00365-8
|
26 |
Kim J K. An electrochemical study on the effect of pitting inhibition in weakly alkaline solution by copper addition in pure iron [J]. Met. Mater. Int., 2003, 9: 47
doi: 10.1007/BF03027229
|
27 |
Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) Corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
|
27 |
吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353
doi: 10.11902/1005.4537.2014.045
|
28 |
Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
doi: 10.1016/j.corsci.2011.05.041
|
29 |
Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
doi: 10.1128/AEM.02848-13
|
30 |
Baba K, Mizuno D, Yasuda K, et al. Effect of Cu addition in pipeline steels on prevention of hydrogen permeation in mildly sour environments [J]. Corrosion, 2016, 72: 1107
doi: 10.5006/2013
|
31 |
Craig B D. Effect of copper on the protectiveness of iron sulfide films [J]. Corrosion, 1984, 40: 471
doi: 10.5006/1.3577918
|
32 |
Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
doi: 10.1016/j.corsci.2012.09.006
|
33 |
Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
|
34 |
Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
|
35 |
Nan L, Yang W C, Liu Y Q, et al. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli [J]. J. Mater. Sci. Technol., 2008, 24: 197
|
36 |
Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250
doi: 10.1016/j.biomaterials.2016.08.031
|
37 |
Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface [J]. Appl. Environ. Microbiol., 2011, 77: 1541
doi: 10.1128/AEM.02766-10
|
38 |
Zhang S, Yang C, Ren G, et al. Study on behaviour and mechanism of Cu2+ ion release from Cu bearing antibacterial stainless steel [J]. Mater. Technol., 2015, 30: B126
doi: 10.1179/1753555714Y.0000000236
|
39 |
Sharifahmadian O, Salimijazi H R, Fathi M H, et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings [J]. Surf. Coat. Technol., 2013, 233: 74
doi: 10.1016/j.surfcoat.2013.01.060
|
40 |
Xia J, Yang C G, Xu D K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
doi: 10.1080/08927014.2015.1062089
|
41 |
Sun D, Xu D K, Yang C G, et al. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance [J]. Mater. Sci. Eng., 2016, C69: 744
|
42 |
Warnes S L, Keevil C W. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact [J]. Appl. Environ. Microbiol., 2011, 77: 6049
doi: 10.1128/AEM.00597-11
|
43 |
Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
doi: 10.1016/j.corsci.2017.12.006
|
44 |
Yin L, Xu D K, Yang C G, et al. Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria [J]. Corros. Sci., 2021, 179: 109141
doi: 10.1016/j.corsci.2020.109141
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|