Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 43-56    DOI: 10.11900/0412.1961.2022.00007
  研究论文 本期目录 | 过刊浏览 |
Cu含量对管线钢耐微生物腐蚀性能的影响
曾云鹏1,2, 严伟2,3(), 史显波2,3, 闫茂成2, 单以银2,3, 杨柯2
1 中国科学技术大学 材料科学与工程学院 沈阳 110016
2 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
3 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
Effect of Copper Content on the MIC Resistance in Pipeline Steel
ZENG Yunpeng1,2, YAN Wei2,3(), SHI Xianbo2,3, YAN Maocheng2, SHAN Yiyin2,3, YANG Ke2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

曾云鹏, 严伟, 史显波, 闫茂成, 单以银, 杨柯. Cu含量对管线钢耐微生物腐蚀性能的影响[J]. 金属学报, 2024, 60(1): 43-56.
Yunpeng ZENG, Wei YAN, Xianbo SHI, Maocheng YAN, Yiyin SHAN, Ke YANG. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. Acta Metall Sin, 2024, 60(1): 43-56.

全文: PDF(4666 KB)   HTML
摘要: 

含Cu耐微生物腐蚀管线钢的开发和应用是解决管道微生物腐蚀难题的有效措施。本工作利用电化学测试及SEM、激光共聚焦显微镜(CLSM)等分析技术,研究了不同Cu含量(0、0.7%、1.34%,质量分数)的X65级管线钢在无菌和接种硫酸盐还原菌(SRB)的近中性模拟土壤浸出液(NS4)中的腐蚀行为,为耐微生物腐蚀管线钢的优化设计提供依据。结果表明,随着Cu含量的升高,含Cu管线钢的抗菌性能和耐蚀性能均有所提高;当Cu含量从0增加到0.70%时,试样表面的点蚀坑密度从714 cm-2下降到244 cm-2;当Cu含量达到1.34%时,点蚀坑密度进一步下降到67 cm-2;含Cu钢在腐蚀过程中持续释放的铜离子在接菌环境中的杀菌作用和其对腐蚀产物层的改善作用,以及其在无菌环境中所形成的Cu2O等保护性腐蚀产物是含Cu管线钢具有优异耐蚀性能的关键原因。

关键词 微生物腐蚀硫酸盐还原菌含Cu管线钢抗菌性能耐蚀性能    
Abstract

Microbiologically induced corrosion (MIC), particularly those caused by sulfate-reducing bacteria (SRB), is considered as a destructive mechanism in buried pipeline steels, which has received considerable attention since its discovery a century ago. Research has shown that sessile cells that are attached to a metal surface embedded in biofilms with extracellular polymeric substances (EPS) are responsible for the occurrence of MIC. However, the commonly used MIC control strategy, i.e., biocides, cannot perform sterilization of sessile cells because of the protection of the biofilm. Cu-bearing pipeline steel is a newly developed steel that can be used for MIC control in buried pipes. The continuous release of cytotoxic Cu ions from the steel matrix leads to MIC resistance. However, the influence of Cu content on MIC resistance remains unclear. A lower Cu content in steel is not beneficial to its MIC resistance, whereas a higher Cu content can increase the cost and may cause “hot shortness” during thermal processing. Therefore, clarifying the influence of Cu content on the properties of Cu-bearing pipeline steel is important for the practical application of the steel. In the present study, the influence of Cu content (0, 0.7%, and 1.34%; mass fraction) on the corrosion behavior of X65 grade Cu-bearing pipeline steel was investigated through electrochemical measurements and surface analysis during 14 d immersion in sterile and SRB-inoculated NS4 solutions, respectively. Experimental results demonstrated that the antibacterial properties and corrosion resistance of the steel improved with the increase of Cu content. When Cu content was increased to 1.34%, the pitting corrosion of the steel in the SRB-inoculated medium was almost suppressed. The protective corrosion products formed in the sterile medium and antibacterial Cu ions continuously released from the steel in the SRB-inoculated medium resulted in the remarkable corrosion resistance of Cu-bearing pipeline steels.

Key wordsmicrobiologically induced corrosion    sulfate reduced bacteria (SRB)    Cu-bearing pipeline steel    antibacterial property    corrosion resistance
收稿日期: 2022-01-06     
ZTFLH:  TG174.2  
基金资助:国家自然科学基金项目(U1906226)
通讯作者: 严 伟,weiyan@ima.ac.cn,主要从事先进钢铁结构材料设计与组织性能控制方面的研究
Corresponding author: YAN Wei, professor, Tel: (024)83978990, E-mail: weiyan@ima.ac.cn
作者简介: 曾云鹏,男,1992年生,博士生
SteelCSiMnCuNbTiMoFe
1#0.020.010.071.340.040.0170.1Bal.
2#0.020.010.050.700.040.0170.1Bal.
3#0.020.010.050.040.0170.1Bal.
表1  实验用钢的成分 (mass fraction / %)
图1  不同Cu含量管线钢的显微组织
图2  灭菌和接菌NS4溶液中不同Cu含量管线钢的开路电位随时间的变化
图3  不同Cu含量管线钢在灭菌和接菌NS4溶液的线性极化电阻(Rp)随时间的变化
图4  不同Cu含量管线钢在无菌和接菌NS4溶液中浸泡14 d后的动电位极化曲线
图5  不同Cu含量管线钢在无菌和接菌NS4溶液中的Nyquist谱随时间的变化
图6  用于EIS拟合的等效电路模型
SteelTime / dRs / (Ω·cm2)QdlRct / (Ω·cm2)χ2
Ydl / (S·s n ·cm-2)ndl
NS-1#1193.61.387 × 10-40.83651.733 × 1046.07 × 10-4
2188.87.166 × 10-50.89531.881 × 1058.79 × 10-4
4175.85.981 × 10-50.90824.377 × 1057.93 × 10-4
7169.25.488 × 10-50.91105.946 × 1058.95 × 10-4
14141.95.519 × 10-50.91046.011 × 1059.05 × 10-4
NS-2#1198.81.427 × 10-40.83856.071 × 1048.29 × 10-4
2196.15.011 × 10-50.89159.385 × 1041.05 × 10-3
4183.63.830 × 10-50.93853.809 × 1059.87 × 10-3
7171.43.783 × 10-40.94255.215 × 1051.01 × 10-3
14148.44.342 × 10-30.94784.932 × 1059.08 × 10-4
NS-3#1193.48.350 × 10-50.84611.814 × 1046.85 × 10-4
2190.14.959 × 10-50.91821.428 × 1051.15 × 10-3
4179.44.756 × 10-50.93691.956 × 1059.09 × 10-4
7166.55.263 × 10-50.94132.121 × 1055.82 × 10-4
14143.97.236 × 10-50.94431.481 × 1056.28 × 10-4
表2  灭菌NS4溶液中的EIS拟合结果
图7  不同Cu含量管线钢在灭菌和接菌NS4溶液中Rct及(Rct+Rf)随时间的变化
图8  不同Cu含量管线钢在接菌NS4溶液中浸泡14 d后的CLSM像
Steel

Time

d

Rs

Ω·cm2

Qf

Rf

Ω·cm2

Qdl

Rct

Ω·cm2

χ2
Yf / S·s n ·cm-2nfYdl / (S·s n ·cm-2)ndl
SRB-1#1216.45.25 × 10-30.91026.627 × 1044.71 × 10-4
2201.88.80 × 10-40.91005.509 × 1048.09 × 10-4
4180.27.73 × 10-30.471347.93.05 × 10-30.95863.897 × 1043.79 × 10-4
7172.51.07 × 10-20.428046.54.51 × 10-30.95821.451 × 1052.43 × 10-5
14153.07.92 × 10-50.468325.52.38 × 10-30.95994.578 × 1059.57 × 10-4
SRB-2#1223.65.50 × 10-40.91345.686 × 1045.74 × 10-4
2205.96.30 × 10-40.91075.136 × 1041.34 × 10-3
4184.05.25 × 10-30.517162.06.83 × 10-50.86133.695 × 1047.08 × 10-4
7166.19.96 × 10-30.487164.34.91 × 10-30.96797.404 × 1041.95 × 10-5
14150.59.37 × 10-20.432668.42.88 × 10-30.93833.659 × 1056.33 × 10-4
SRB-3#1336.71.202 × 10-40.80965.097 × 1045.74 × 10-4
2311.77.821 × 10-50.87634.003 × 1041.34 × 10-3
4184.35.62 × 10-30.538546.83.358 × 10-30.96543.486 × 1043.32 × 10-5
7169.98.93 × 10-30.441157.35.402 × 10-30.96584.555 × 1041.35 × 10-5
14154.87.00 × 10-50.441763.04.840 × 10-30.95991.068 × 1051.07 × 10-3
表3  接菌NS4溶液中的EIS拟合结果
图9  不同Cu含量管线钢在灭菌和接菌NS4溶液中浸泡14 d后的表面腐蚀产物形貌SEM像
图10  不同Cu含量管线钢在无菌和接菌NS4溶液中浸泡14 d后表面腐蚀产物的XPS全谱和EDS分析结果
图11  不同Cu含量管线钢在无菌和接菌NS4溶液中浸泡14 d后表面腐蚀产物中Cu的精细谱
图12  不同Cu含量管线钢在无菌和接菌NS4溶液中浸泡14 d后去除腐蚀产物后的表面形貌
图13  不同Cu含量管线钢在接菌NS4溶液中浸泡14 d后的表面点蚀坑统计结果
1 Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
doi: 10.1007/BF03028224
2 Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation [J]. Corros. Sci., 2008, 50: 2816
doi: 10.1016/j.corsci.2008.07.008
3 Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
4 Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
doi: 10.1016/j.oceaneng.2013.05.005
5 Hashemi S J, Bak N, Khan F, et al. Bibliometric analysis of microbiologically influenced corrosion (MIC) of oil and gas engineering systems [J]. Corrosion, 2017, 74: 468
doi: 10.5006/2620
6 Conley S, Franco G, Faloona I, et al. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA [J]. Science, 2016, 351: 1317
doi: 10.1126/science.aaf2348 pmid: 26917596
7 Jacobson G A. Corrosion at Prudhoe Bay—A lesson on the line [J]. Mater. Perform., 2007, 46: 26
8 Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
9 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
10 Lv M Y, Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. BioTechnol., 2018, 17: 431
doi: 10.1007/s11157-018-9473-2
11 Flemming H C, Wingender J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
12 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
13 Costerton J W, Ellis B, Lam K, et al. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria [J]. Antimicrob. Agents Chemother., 1994, 38: 2803
doi: 10.1128/AAC.38.12.2803 pmid: 7695266
14 Yu H B, Li Z M, Xia Y Y, et al. Effect of copper addition in carbon steel on biocorrosion by sulfate-reducing bacteria in solution [J]. Anti-Corros. Methods Mater., 2021, 68: 302
15 Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
15 史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
16 Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
17 Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
18 Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
19 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
19 吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
doi: 10.11902/1005.4537.2014.044
20 Gabrielli C, Keddam M, Takenouti H, et al. The relationship between the impedance of corroding electrode and its polarization resistance determined by a linear voltage sweep technique [J]. Electrochim. Acta, 1979, 24: 61
doi: 10.1016/0013-4686(79)80042-0
21 Yu L B, Yan M C, Ma J, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568
21 于利宝, 闫茂成, 马 健 等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568
22 Xu J, Sun C, Yan M C, et al. Variations of microenvironments with and without SRB for steel Q 235 under a simulated disbonded coating [J]. Ind. Eng. Chem. Res., 2013, 52: 12838
doi: 10.1021/ie303335n
23 Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
doi: 10.1016/j.corsci.2013.04.058
24 Hong J H, Lee S H, Kim J G, et al. Corrosion behaviour of copper containing low alloy steels in sulphuric acid [J]. Corros. Sci., 2012, 54: 174
doi: 10.1016/j.corsci.2011.09.012
25 Hermas A A, Ogura K, Adachi T. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures [J]. Electrochim. Acta, 1995, 40: 837
doi: 10.1016/0013-4686(94)00365-8
26 Kim J K. An electrochemical study on the effect of pitting inhibition in weakly alkaline solution by copper addition in pure iron [J]. Met. Mater. Int., 2003, 9: 47
doi: 10.1007/BF03027229
27 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) Corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
27 吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353
doi: 10.11902/1005.4537.2014.045
28 Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
doi: 10.1016/j.corsci.2011.05.041
29 Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
doi: 10.1128/AEM.02848-13
30 Baba K, Mizuno D, Yasuda K, et al. Effect of Cu addition in pipeline steels on prevention of hydrogen permeation in mildly sour environments [J]. Corrosion, 2016, 72: 1107
doi: 10.5006/2013
31 Craig B D. Effect of copper on the protectiveness of iron sulfide films [J]. Corrosion, 1984, 40: 471
doi: 10.5006/1.3577918
32 Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
doi: 10.1016/j.corsci.2012.09.006
33 Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
34 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
35 Nan L, Yang W C, Liu Y Q, et al. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli [J]. J. Mater. Sci. Technol., 2008, 24: 197
36 Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250
doi: 10.1016/j.biomaterials.2016.08.031
37 Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface [J]. Appl. Environ. Microbiol., 2011, 77: 1541
doi: 10.1128/AEM.02766-10
38 Zhang S, Yang C, Ren G, et al. Study on behaviour and mechanism of Cu2+ ion release from Cu bearing antibacterial stainless steel [J]. Mater. Technol., 2015, 30: B126
doi: 10.1179/1753555714Y.0000000236
39 Sharifahmadian O, Salimijazi H R, Fathi M H, et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings [J]. Surf. Coat. Technol., 2013, 233: 74
doi: 10.1016/j.surfcoat.2013.01.060
40 Xia J, Yang C G, Xu D K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
doi: 10.1080/08927014.2015.1062089
41 Sun D, Xu D K, Yang C G, et al. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance [J]. Mater. Sci. Eng., 2016, C69: 744
42 Warnes S L, Keevil C W. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact [J]. Appl. Environ. Microbiol., 2011, 77: 6049
doi: 10.1128/AEM.00597-11
43 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
doi: 10.1016/j.corsci.2017.12.006
44 Yin L, Xu D K, Yang C G, et al. Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria [J]. Corros. Sci., 2021, 179: 109141
doi: 10.1016/j.corsci.2020.109141
[1] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[2] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[3] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[4] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[5] 冯浩,李花兵,路鹏冲,杨纯田,姜周华,武晓雷. 铜绿假单胞菌对CrCoNi中熵合金微生物腐蚀行为的影响[J]. 金属学报, 2019, 55(11): 1457-1468.
[6] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[7] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[8] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[9] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.
[10] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[11] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[12] 田家龙,李永灿,王威,严伟,单以银,姜周华,杨柯. 多相强化型马氏体时效不锈钢中的合金元素偏聚效应*[J]. 金属学报, 2016, 52(12): 1517-1526.
[13] 王帅, 杨春光, 徐大可, 沈明钢, 南黎, 杨柯. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460.
[14] 魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
[15] 向红亮, 郭培培, 刘东. 含Ag抗菌双相不锈钢组织及抗菌性能研究[J]. 金属学报, 2014, 50(10): 1210-1216.