Please wait a minute...
金属学报  2024, Vol. 60 Issue (1): 57-68    DOI: 10.11900/0412.1961.2022.00236
  研究论文 本期目录 | 过刊浏览 |
M50轴承钢热变形过程中孔洞形成及演化机制
侯志远1,2,3, 刘威峰1,3, 徐斌1,3(), 孙明月1,3(), 时婧2, 任少飞1,3
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2 中国海洋大学 材料科学与工程学院 青岛 266003
3 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation
HOU Zhiyuan1,2,3, LIU Weifeng1,3, XU Bin1,3(), SUN Mingyue1,3(), SHI Jing2, REN Shaofei1,3
1 CAS Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266003, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

侯志远, 刘威峰, 徐斌, 孙明月, 时婧, 任少飞. M50轴承钢热变形过程中孔洞形成及演化机制[J]. 金属学报, 2024, 60(1): 57-68.
Zhiyuan HOU, Weifeng LIU, Bin XU, Mingyue SUN, Jing SHI, Shaofei REN. Formation and Evolution Mechanism of Voids in M50 Bearing Steel During Thermal Deformation[J]. Acta Metall Sin, 2024, 60(1): 57-68.

全文: PDF(5678 KB)   HTML
摘要: 

M50轴承钢广泛应用于航空发动机主轴轴承的制造,轴承钢热加工产生的孔洞极易作为疲劳裂纹的萌生源导致轴承的疲劳破坏。本工作通过热模拟实验和OM、SEM、EBSD、原位扫描等方法系统研究了不同应变速率(0.001~1 s-1)、变形温度(1000~1150℃)和应变(10%~50%)对M50轴承钢内部孔洞产生行为的影响,以及后续保温处理过程中孔洞的愈合机制。结果表明,轴承钢内部一次碳化物M2C和MC与基体硬度的差异导致非协调变形,从而在碳化物与基体交界处产生孔洞,此外碳化物的破碎也会促使孔洞在其内部形成。通过对不同条件下孔洞的产生情况进行定量分析发现,在高应变速率(1 s-1)、低变形温度(1000℃)、中等变形量(30%)的条件下,M50轴承钢内部产生的孔洞最多。变形后的保温处理可显著促进孔洞的愈合,其中保温处理后孔洞愈合区域富集Cr元素。

关键词 M50轴承钢一次碳化物孔洞热变形愈合    
Abstract

M50 bearing steel is widely used in the manufacture of aeroengine spindle bearings. The voids generated by the thermal processing of bearing steel can easily initiate fatigue cracks and lead to fatigue failure of the bearings. Thus, it is essential to understand the steel production conditions, void distribution in the steel, and effect of the subsequent treatment on the healing process of voids to improve the thermal processing and mechanical properties of the steel. In this work, the thermal deformation of the M50 bearing steel was conducted using a thermal simulation machine. The effects of the strain rate (0.001-1 s-1), deformation temperature (1000-1150oC) and strain (10%-50%) on the formation of voids and void healing during the subsequent thermal treatment were systematically studied using OM, SEM, EBSD, and in situ scanning methods. The results show that the formation of voids between the carbide and matrix is attributed to the different hardness values between the matrix and primary M2C and MC carbides. In addition, the carbide fractures can promote the formation of internal voids. The quantitative analysis of the voids indicated that most voids are generated under the following conditions: a high strain rate of 1 s-1, low deformation temperature of 1000oC, and medium deformation of 30%. Applying a heat treatment after deformation can significantly promote the void healing process, and the Cr element is enriched in the healing zone due to its rapid diffusion in γ-Fe.

Key wordsM50 bearing steel    primary carbide    void    hot compression    healing
收稿日期: 2022-05-12     
ZTFLH:  TG142  
基金资助:国家重点研发计划项目(2018YFA0702900);国家自然科学基金项目(51774265);国家自然科学基金项目(51701225);国家自然科学基金项目(52173305);国家重大科技专项项目(2019ZX06004010);中国科学院战略重点研究项目(XDC04000000);中国核工业集团领创研究项目,以及中国科学院青年创新促进会项目
通讯作者: 徐 斌,bxu@imr.ac.cn,主要从事特殊钢与大锻件材料及先进控形控性技术研究;
孙明月,mysun@imr.ac.cn,主要从事特殊钢与大锻件材料及先进控形控性技术研究
Corresponding author: XU Bin, professor, Tel: (024)83970108, E-mail: bxu@imr.ac.cn;
SUN Mingyue, professor, Tel: (024)83970108, E-mail: mysun@imr.ac.cn
作者简介: 侯志远,男,1996年生,硕士
图1  M50铸态样品热压缩实验工艺曲线
图2  M50轴承钢原始铸态组织的OM像
图3  M50轴承钢原始铸态样品内部显微组织的SEM像、EDS结果及碳化物的Kikuchi花样
图4  M50轴承钢铸态样品经1100℃、0.1 s-1和30%热变形处理后的OM和SEM像
图5  M50轴承钢经1100℃、0.1 s-1和30%热变形处理后样品内部不同位置处孔洞的SEM像,MC和M2C碳化物的Kikuchi花样,以及碳化物周围孔洞的EDS线扫描结果
图6  变形温度1100℃和应变50%时不同应变速率下热变形后M50轴承钢中碳化物周围孔洞的SEM像及孔洞的体积分数和数量密度统计结果
图7  应变50%、应变速率0.1和1 s-1时不同变形温度下热变形后M50轴承钢中碳化物周围孔洞的SEM像
图8  应变50%、应变速率0.1和1 s-1时不同变形温度下孔洞的体积分数及数量密度
图9  M50轴承钢在1100℃变形不同程度后碳化物周围孔洞的SEM像及孔洞的体积分数和数量密度统计结果
图10  热变形样品在850℃下保温1 h前后样品的SEM像
图11  热变形样品经850℃保温1 h后样品内部孔洞附近区域的SEM像及元素EDS线扫描分析
图12  保温样品内部不同区域元素分布图及不同温度保温后孔洞平均面积的统计结果
1 Maugis P, Gouné M. Kinetics of vanadium carbonitride precipitation in steel: A computer model [J]. Acta Mater., 2005, 53: 3359
doi: 10.1016/j.actamat.2005.03.036
2 Garg A, McNelley T R, Perry J L. Analysis of microporosity associated with insoluble carbides in VIM-VAR AISI M-50 steel [J]. Metallography, 1987, 20: 89
doi: 10.1016/0026-0800(87)90067-X
3 Tomita Y. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels [J]. Metall. Trans., 1990, 21A: 2555
4 Biswas D K, Venkatraman M, Narendranath C S, et al. Influence of sulfide inclusion on ductility and fracture behavior of resulfurized HY-80 steel [J]. Metall. Trans., 1992, 23A: 1479
5 Roberts W, Lehtinen B, Easterling K E. An in situ SEM study of void development around inclusions in steel during plastic deformation [J]. Acta Metall., 1976, 24: 745
doi: 10.1016/0001-6160(76)90109-7
6 Hwang Y M, Chen D C. Analysis of the deformation mechanism of void generation and development around inclusions inside the sheet during sheet rolling processes [J]. Proc. Inst. Mech. Eng., 2003, 217B: 1373
7 Thomson R D, Hancock J W. Ductile failure by void nucleation, growth and coalescence [J]. Int. J. Fract., 1984, 26: 99
doi: 10.1007/BF01157547
8 Pietrzyk M, Kawalla R, Pircher H. Simulation of the behaviour of voids in steel plates during hot rolling [J]. Steel Res., 1995, 66: 526
doi: 10.1002/srin.1995.66.issue-12
9 Ervasti E, Ståhlberg U. Void initiation close to a macro-inclusion during single pass reductions in the hot rolling of steel slabs: A numerical study [J]. J. Mater. Process. Technol., 2005, 170: 142
doi: 10.1016/j.jmatprotec.2005.04.117
10 Yu H L, Liu X H, Bi H Y, et al. Deformation behavior of inclusions in stainless steel strips during multi-pass cold rolling [J]. J. Mater. Process. Technol., 2009, 209: 455
doi: 10.1016/j.jmatprotec.2008.02.016
11 Cheng R, Zhang J M, Wang B. Formation mechanism of voids around hard inclusion during hot rolling processes [J]. High Temp. Mater. Processes, 2018, 37: 717
doi: 10.1515/htmp-2017-0051
12 Cheng R, Zhang J M, Wang B. Deformation behavior of MnO13%-Al2O318%-SiO269% inclusion in different steels during hot rolling processes [J]. Metall. Res. Technol., 2017, 114: 608
doi: 10.1051/metal/2017058
13 Klevebring B I, Bogren E, Mahrs R. Determination of the critical inclusion size with respect to void formation during hot working [J]. Metall. Trans., 1975, 6A: 319
14 Harik V M, Cairncross R A. Evolution of interfacial voids around a cylindrical inclusion [J]. J. Appl. Mech., 1999, 66: 310
doi: 10.1115/1.2791050
15 Luo C H. Evolution of voids close to an inclusion in hot deformation of metals [J]. Comput. Mater. Sci., 2001, 21: 360
doi: 10.1016/S0927-0256(01)00149-5
16 Harik V M, Cairncross R A. Formation of interfacial voids in composites with a weakly bonded viscoplastic matrix [J]. Mech. Mater., 2000, 32: 807
doi: 10.1016/S0167-6636(00)00048-X
17 Dunne F P E, Katramados I. Micro-mechanical modelling of strain induced porosity under generally compressive stress states [J]. Int. J. Plast., 1998, 14: 577
doi: 10.1016/S0749-6419(99)80001-1
18 Wang A, Thomson P F, Hodgson P D. A study of pore closure and welding in hot rolling process [J]. J. Mater. Process. Technol., 1996, 60: 95
doi: 10.1016/0924-0136(96)02313-8
19 Zhou X Y, Shao Z T, Pruncu C I, et al. A study on central crack formation in cross wedge rolling [J]. J. Mater. Process. Technol., 2020, 279: 116549
doi: 10.1016/j.jmatprotec.2019.116549
20 Wang Y, Yu F, Cao W Q, et al. Effects of thermal deformation on refinement and uniformity of carbide in high temperature bearing steel [J]. Hot Work. Technol., 2015, 44(13): 35
20 王 燕, 俞 峰, 曹文全 等. 热变形对高温轴承钢中碳化物的均质化与细质化影响规律研究 [J]. 热加工工艺, 2015, 44(13): 35
21 Bombač D, Terčelj M, Kugler G, et al. Amelioration of surface cracking during hot rolling of AISI D2 tool steel [J]. Mater. Sci. Technol., 2018, 34: 1723
doi: 10.1080/02670836.2018.1475862
22 Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment [J]. Sci. Rep., 2019, 9: 11315
doi: 10.1038/s41598-019-47919-6 pmid: 31383934
23 Du N Y, Liu H H, Cao Y F, et al. Formation mechanism of MC and M2C primary carbides in as-cast M50 bearing steel [J]. Mater. Charact., 2021, 174: 111011
doi: 10.1016/j.matchar.2021.111011
24 Liu W F, Guo Y F, Cao Y F, et al. Transformation behavior of primary MC and M2C carbides in Cr4Mo4V steel [J]. J. Alloys Compd., 2021, 889: 161755
doi: 10.1016/j.jallcom.2021.161755
25 Chen L, Song B, Chen T M, et al. Control countermeasures of center porosity and shrinkage in 45 steel continuous casting bloom [J]. Iron Steel, 2018, 53(8): 49
25 陈 亮, 宋 波, 陈天明 等. 45钢连铸大方坯中心疏松与缩孔控制 [J]. 钢铁, 2018, 53(8): 49
26 Stefanescu D M. Computer simulation of shrinkage related defects in metal castings—A review [J]. Int. J. Cast Met. Res., 2005, 18: 129
doi: 10.1179/136404605225023018
27 Gao Z M, Jie W Q, Liu Y Q, et al. Formation mechanism and coupling prediction of microporosity and inverse segregation: A review [J]. Acta Metall. Sin., 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
27 高志明, 介万奇, 刘永勤 等. 微观孔洞和逆偏析缺陷的形成机理与耦合预测研究进展 [J]. 金属学报, 2018, 54: 717
doi: 10.11900/0412.1961.2017.00501
28 Sun L X, Li M Q. High temperature behavior of isothermally compressed M50 steel [J]. J. Iron Steel Res. Int., 2015, 22: 969
doi: 10.1016/S1006-706X(15)30098-4
29 Wu Y C, Jiang H W, Hu Y, et al. Effect of multi-direction forging on carbide evolution of M50 steel [J]. China Metall., 2020, 30(9): 98
29 吴玉成, 姜宏伟, 胡 园 等. 多向锻造对M50钢一次碳化物破碎机制的影响 [J]. 中国冶金, 2020, 30(9): 98
30 Belchenko G I, Gubenko S I. Deformation of non-metallic inclusions during steel rolling [J]. News USSR Acad. Sci. Met., 1983, 4: 80
31 Antretter T, Fischer F D. Critical shapes and arrangements of carbides in high-speed tool steel [J]. Mater. Sci. Eng., 1997, A237: 6
32 Zhou B, Shen Y, Chen J, et al. Breakdown behavior of eutectic carbide in high speed steel during hot compression [J]. J. Iron Steel Res. Int., 2011, 18: 41
33 Di H S, Zhang X M, Wang G D, et al. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel [J]. J. Mater. Process. Technol., 2005, 166: 359
doi: 10.1016/j.jmatprotec.2004.07.085
34 Sun J. A model for shrinkage of a spherical void in the center of a grain: Influence of lattice diffusion [J]. J. Mater. Eng. Perform., 2002, 11: 322
doi: 10.1361/105994902770344150
35 Yu H H, Suo Z. An axisymmetric model of pore-grain boundary separation [J]. J. Mech. Phys. Solids, 1999, 47: 1131
doi: 10.1016/S0022-5096(98)00093-3
36 Zhang H L, Sun J. Diffusive healing of intergranular fatigue microcracks in iron during annealing [J]. Mater. Sci. Eng., 2004, A382: 171
37 Song M, Du K, Wen S P, et al. In situ electron microscopy investigation of void healing in an Al-Mg-Er alloy at a low temperature [J]. Acta Mater., 2014, 69: 236
doi: 10.1016/j.actamat.2014.02.004
38 Song M, Du K, Wang C Y, et al. Geometric and chemical composition effects on healing kinetics of voids in Mg-bearing Al alloys [J]. Metall. Mater. Trans., 2016, 47A: 2410
39 Han J T, Zhao G, Cao Q X. Discovery of inner crack recovery and its structure change in 20MnMo steel [J]. Acta Metall. Sin., 1996, 32: 723
39 韩静涛, 赵 钢, 曹起骧. 20MnMo钢内裂纹修复现象的发现及其金属组织的变化 [J]. 金属学报, 1996, 32: 723
40 Han Y H, Li C S, Ren J Y, et al. Dendrite segregation changes in high temperature homogenization process of as-cast H13 steel [J]. ISIJ Int., 2019, 59: 1893
doi: 10.2355/isijinternational.ISIJINT-2019-148
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[4] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[5] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[6] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[7] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[8] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[10] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[11] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[12] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 闫华东,靳慧. G20Mn5N铸钢件微细观孔洞三维特征及形态演化[J]. 金属学报, 2019, 55(3): 341-348.
[15] 黄宇, 成国光, 李世健, 代卫星. Ce微合金化H13钢中一次碳化物的析出机理及热稳定性研究[J]. 金属学报, 2019, 55(12): 1487-1494.