Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1230-1242    DOI: 10.11900/0412.1961.2023.00138
  研究论文 本期目录 | 过刊浏览 |
WTa型粉末高温合金的蠕变性能及溶质原子偏聚
白佳铭1,2,3, 刘建涛1,2, 贾建1,2, 张义文1,2()
1钢铁研究总院 高温材料研究所 北京 100081
2北京钢研高纳科技股份有限公司 北京 100081
3东北大学 材料科学与工程学院 沈阳 110819
Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy
BAI Jiaming1,2,3, LIU Jiantao1,2, JIA Jian1,2, ZHANG Yiwen1,2()
1High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2Gaona Aero Material Co. Ltd., Beijing 100081, China
3School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

白佳铭, 刘建涛, 贾建, 张义文. 高WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
Jiaming BAI, Jiantao LIU, Jian JIA, Yiwen ZHANG. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. Acta Metall Sin, 2023, 59(9): 1230-1242.

全文: PDF(5881 KB)   HTML
摘要: 

研究了最新开发的高W高Ta型粉末高温合金GNPM01优异的蠕变性能和蠕变强化机理。利用球差校正扫描透射电子显微镜(AC-STEM),详细分析了粉末高温合金GNPM01蠕变变形机制和溶质原子在超点阵层错和微孪晶上的偏聚行为,阐明了溶质原子Cr、Co、Mo的偏聚是导致无序微孪晶在晶内扩展的根本原因。GNPM01合金在815℃蠕变过程中,γ'相内孤立的超点阵外禀层错(SESF)处出现了W、Ta、Nb、Co和Ti的Suzuki偏聚,并且偏聚原子具有有序的占位,造成SESF处发生局部微区相变(LPT),形成的[(Ni, Co)3(Ti, Nb, Ta, W)]有序相η相能有效阻碍微孪晶的形成和扩展,从而降低合金的蠕变速率。

关键词 粉末高温合金WTa蠕变机制局部微区相变微孪晶    
Abstract

Developing superalloys and improving their temperature capability are extremely crucial for the advancement of aero-engines. The powder metallurgy (PM) technology can prevent the macroscopic segregation caused by casting and create a high-alloying aero-engine turbine disk alloy having remarkable microstructural homogeneity and superior thermal capability. PM superalloys have been developed into the 3rd generation alloys for decades, and alloys such as René104 already entered service. The chemical composition of the 4th generation PM superalloy is still being researched with the aim of increasing the temperature capability for disk applications to 815oC. In this work, the remarkable creep resistance and creep strengthening mechanism of a novel high-W and high-Ta type PM superalloy GNPM01 was examined. The creep deformation mechanism of GNPM01 alloy and the segregation of elements on deformation defects were investigated using advanced spherical aberration-corrected scanning transmission electron microscopy. The results reveal that the creep resistance of GNPM01 alloy is considerably higher than that of the 3rd generation PM superalloy. The temperature capacity of GNPM01 alloy is approximately 40oC greater than that of FGH4098 alloy under the creep condition of 600 MPa and 1000 h. The creep strength of GNPM01 alloy is approximately 160 MPa higher than that of the FGH4098 alloy at 815oC. In the experimental conditions, the creep deformation behavior was dominated by deformed microtwins, and the GNPM01 alloy clearly slowed down the widening of extended stacking faults and the thickening of microtwins during the creep deformation. It was discovered that the element enrichment of Co, Cr, and Mo existed in the microtwins, and the phase transformation of the twin-structure in γ' phase was disordered because of the segregation of Co, Cr, and Mo by atomic-level energy dispersive X-ray spectroscopy. The isolated superlattice stacking faults in FGH4098 alloy also occurred in the disordered phase transitions. The disordering of superlattice stacking fault or microtwin structure was due to the segregation of Cr, Co, and Mo, which also resulted in the a / 6<112> Shockley partials shearing γ′ phase without producing high-energy nearest-neighbor Al—Al bonds. The segregation disordered the L12 structure resulted in reduced pinning of partials by the ordered γ′ phase, which increased the creep rate of the alloy. During the GNPM01 alloy creeping at 815oC, solute atoms W, Ta, and Nb segregated at the isolated superlattice extrinsic stacking fault (SESF) had ordered atomic occupancy. The fault-level local phase transformation occurred in isolated SESF, forming the [(Ni, Co)3(Ti, Nb, Ta, W)] ordered η phase that can effectively inhibit the formation and expansion of microtwins, thus lowering the creep rate of GNPM01 alloy.

Key wordspowder metallurgy superalloy    W    Ta    creep mechanism    local phase transformation    microtwin
收稿日期: 2023-04-03     
ZTFLH:  TG123.3  
基金资助:国家科技重大专项项目(2017-VI-0008-0078)
作者简介: 白佳铭,男,1994年生,博士生
AlloyCCoCrMoWAlTiNbTaHfNi
GNPM010.0616.010.02.55.03.23.02.05.00.3Bal.
FGH4098[24]0.0520.613.03.82.13.43.70.92.4-Bal.
FGH4096[24]0.0313.015.84.334.142.263.880.82--Bal.
表1  GNPM01、FGH4098[24]和FGH4096[24]合金的化学成分 (mass fraction / %)
图1  标准热处理态GNPM01和FGH4098合金的晶界及γ′相形貌
图2  标准热处理态GNPM01和FGH4098合金中取向差角的分布及γ和γ′相中的溶质原子浓度
图3  利用Larson-Miller关系对FGH4096、FGH4098和GNPM01合金持久强度外推的结果
图4  GNPM01与FGH4098合金不同条件下的蠕变应变-蠕变时间曲线和蠕变应变速率-蠕变时间曲线
图5  FGH4098和GNPM01合金在650℃、980 MPa蠕变断裂后的位错亚结构
图6  650℃、980 MPa蠕变断裂后FGH4098合金中微孪晶附近的STEM-LAADF像、STEM-HAADF像及EDS元素面分布图
图7  650℃、1100 MPa蠕变断裂后GNPM01合金中微孪晶处STEM-HAADF像及EDS元素面分布图
图8  FGH4098和GNPM01合金在750℃蠕变断裂后侧立的微孪晶的TEM-BF像(BD//<011>晶带轴)
图9  815℃、460 MPa蠕变断裂后FGH4098和GNPM01合金变形组织的位错亚结构
图10  815℃、460 MPa蠕变断裂后GNPM01合金中孤立的超点阵层错处的STEM-HAADF像及EDS分析
图11  FGH4098和GNPM01合金中微孪晶上具有原子占位信息的STEM-HAADF像及高分辨EDS元素面分布图
图12  FGH4098合金中孤立超点阵外禀层错(SESF)的STEM-HAADF像、相应位置的衬度强度分布及原子级别EDS元素面分布图
图13  GNPM01合金中孤立SESF的STEM-HAADF像、相应位置的衬度强度分布及原子级别EDS元素面分布图
1 Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709 pmid: 27443900
2 Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3 [R/OL]. (2005-6-1)[2021-3-6].
3 Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy doe: Chemistry, properties, phase formations and thermal stability [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Hoboken, New Jersey: John Wiley & Sons Inc., 2016: 187
4 Fu C L, Reed R, Janotti A, et al. On the diffusion of alloying elements in the nickel-base superalloys [A], Superalloys 2004: Proceedings of the Tenth International Symposium of superalloys [C]. Warrendale, Pennsylvania: The Minerals, Metals & Materials Society, 2004: 867
5 Bai J M, Zhang H P, Liu J T, et al. Investigation of room temperature strengthening mechanism on PM Ni-base superalloys with tantalum addition [J]. Mater. Charact., 2022, 191: 112089
doi: 10.1016/j.matchar.2022.112089
6 Razumovskiy V I, Lozovoi A Y, Razumovskii I M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion [J]. Acta Mater., 2015, 82: 369
doi: 10.1016/j.actamat.2014.08.047
7 Zhang Y W, Hu B F. Function of microelement Hf in powder metallurgy nickel-based superalloys [J]. Acta Metall. Sin., 2015, 51: 967
doi: 10.11900/0412.1961.2014.00704
7 张义文, 胡本芙. 镍基粉末高温合金中微量元素Hf的作用 [J]. 金属学报, 2015, 51: 967
8 Gao S, Hou J S, Yang F, et al. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700oC [J]. J. Alloys Compd., 2017, 729: 903
doi: 10.1016/j.jallcom.2017.09.194
9 Gao S, Hou J S, Yang F, et al. Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy [J]. Mater. Sci. Eng., 2017, A706: 153
10 Berthod P, Aranda L, Vébert C, et al. Experimental and thermodynamic study of the high temperature microstructure of tantalum containing nickel-based alloys [J]. Calphad, 2004, 28: 159
doi: 10.1016/j.calphad.2004.07.005
11 Meng Z Y, Sun G C, Li M L, et al. The Strengthening effect of tantalum in nickel-base superalloys [A], Superalloys 1984: Proceedings of the Fifth International Symposium on Superalloys [C]. Warrendale, Pennsylvania: The Metallurgical Society of AIME, 1984: 563
12 Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2001, 32A: 2409
13 Smith T M, Gabb T P, Wertz K N, et al. Enhancing the creep strength of next-generation disk superalloys via local phase transformation strengthening [A], Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys [C]. Cham, Switzerland: Springer Nature Switzerland AG, 2020: 726
14 Smith T M, Esser B D, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys[J]. Nat. Commun., 2016, 7: 13434
doi: 10.1038/ncomms13434 pmid: 27874007
15 HiraShuji, TanakaYoshinosuke, MiyoshiEiji et, al, Translateby Guo T W, LiA D, XuJ P. High Temperature Strength of Metallic Materials: Theory and Design [M]. Beijing: Science Press, 1983: 65
15 平修二, 田中吉之助, 三好荣次等著. 郭廷玮, 李安定, 徐介平译. 金属材料的高温强度 : 理论·设计 [M]. 北京: 科学出版社, 1983: 65
16 Smith T M, Unocic R R, Deutchman H, et al. Creep deformation mechanism mapping in nickel base disk superalloys [J]. Mater. High Temp., 2016, 33: 372
doi: 10.1080/09603409.2016.1180858
17 Bai J M, Zhang H P, Li X Y, et al. Evolution of creep rupture mechanism in advanced powder metallurgy superalloys with tantalum addition [J]. J. Alloys Compd., 2022, 925: 166713
doi: 10.1016/j.jallcom.2022.166713
18 Chen Q Z, Knowles D M. Mechanism of 〈112〉/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750oC and 750 MPa [J]. Mater. Sci. Eng., 2003, A356: 352
19 Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys [J]. Prog. Mater. Sci., 2009, 54: 839
doi: 10.1016/j.pmatsci.2009.03.010
20 Sarosi P M, Viswanathan G B, Mills M J. Direct observation of an extended complex stacking fault in the γ′ phase of a Ni-base superalloy [J]. Scr. Mater., 2006, 55: 727
doi: 10.1016/j.scriptamat.2006.06.019
21 Suzuki H. Segregation of solute atoms to stacking faults [J]. J. Phys. Soc. Jpn, 1962, 17: 322
doi: 10.1143/JPSJ.17.322
22 Viswanathan G B, Shi R, Genc A, et al. Segregation at stacking faults within the γ' phase of two Ni-base superalloys following intermediate temperature creep [J]. Scr. Mater., 2015, 94: 5
doi: 10.1016/j.scriptamat.2014.06.032
23 Zhang Y W, Liu J T, Jia J, et al. Development of powder metallurgy superalloy [J]. Powder Metall. Ind., 2022, 32(6): 150
23 张义文, 刘建涛, 贾 建 等. 粉末高温合金研究进展 [J]. 粉末冶金工业, 2022, 32(6): 150
24 Zhang Y W, Liu J T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
24 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
25 Yuan Y, Gu Y F, Cui C Y, et al. A novel strategy for the design of advanced engineering alloys-strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
doi: 10.1002/adem.v13.4
26 Tang Y L, Liu J T, Cheng H W, et al. Effect of hafnium on annealing twin formation in as-hot isostatically pressed nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2019, 772: 949
doi: 10.1016/j.jallcom.2018.09.025
27 Larson F R, Miller J. A time-temperature relationship for rupture and creep stresses [J]. Trans. ASME, 1952, 74: 765
28 Dyson B F, McLean M. Creep deformation of engineering alloys: Developments from physical modelling [J]. ISIJ Int., 1990, 30: 802
doi: 10.2355/isijinternational.30.802
29 Unocic R R, Sarosi P M, Viswanathan G B, et al. The creep deformation mechanisms of nickel base superalloy René104 [J]. Microsc. Microanal., 2005, 11: 1874
30 Unocic R R, Kovarik L, Shen C, et al. Deformation mechanisms in Ni-base disk superalloys at higher temperatures [A], Superalloys 2008: Proceedings of the 11th Intenational Symposium of Superalloys [C]. Hoboken, New Jersey: John Wiley & Sons Inc., 2008: 377
31 Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René88DT [J]. Mater. Sci. Eng., 2005, A400: 489
32 Bai J M, Zhang H P, Liu J T, et al. Temperature dependence of tensile deformation mechanisms in a powder metallurgy Ni-Co-Cr based superalloy with Ta addition [J]. Mater. Sci. Eng., 2022, A856: 143965
33 Kim K H. Digitalmicrograph script source listing for a geometric phase analysis [J]. Appl. Microsc., 2015, 45: 101
doi: 10.9729/AM.2015.45.2.101
34 Smith T M, Esser B D, Good B, et al. Segregation and phase transformations along superlattice intrinsic stacking faults in Ni-Based superalloys [J]. Metall. Mater Trans., 2018, 49A: 4186
35 Wen Y-F, Sun J, Huang J. First-principles study of stacking fault energies in Ni3Al intermetallic alloys [J]. Trans. Nonferrous Metall. Soc. China, 2012, 22: 661
doi: 10.1016/S1003-6326(11)61229-6
36 Zhang H, Pei Y B, Gong X F, et al. Deformation nanotwins in a single-crystal Ni-based superalloy at room temperature and low strain rate [J]. Mater. Charact., 2022, 187: 111865
doi: 10.1016/j.matchar.2022.111865
37 Yu X X, Wang C Y. Effect of alloying element on dislocation cross-slip in γ'-Ni3Al: A first-principles study [J]. Philos. Mag., 2012, 92: 4028
doi: 10.1080/14786435.2012.700419
[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[5] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[6] 杨秦政, 杨晓光, 黄渭清, 石多奇. 粉末高温合金FGH4096的疲劳小裂纹扩展行为[J]. 金属学报, 2022, 58(5): 683-694.
[7] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[8] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[10] 张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
[11] 杨志昆, 王浩, 张义文, 胡本芙. Ta含量对镍基粉末高温合金高温蠕变变形行为和性能的影响[J]. 金属学报, 2021, 57(8): 1027-1038.
[12] 王文权, 杜明, 张新戈, 耿铭章. H13钢表面电火花沉积WC-Ni基金属陶瓷涂层微观组织及摩擦磨损性能[J]. 金属学报, 2021, 57(8): 1048-1056.
[13] 韩颖, 王宏双, 曹云东, 安跃军, 谈国旗, 李述军, 刘增乾, 张哲峰. 微观定向结构Cu-W复合材料的力学与电学性能[J]. 金属学报, 2021, 57(8): 1009-1016.
[14] 黄松鹏, 彭灿, 曹公望, 王振尧. BTA保护的白铜在模拟工业大气环境中的腐蚀行为[J]. 金属学报, 2021, 57(3): 317-326.
[15] 易晓鸥, 韩文妥, 刘平平, FERRONIFrancesco, 詹倩, 万发荣. 金属W中辐照缺陷的产生、演化与热回复机制[J]. 金属学报, 2021, 57(3): 257-271.