|
|
高W高Ta型粉末高温合金的蠕变性能及溶质原子偏聚 |
白佳铭1,2,3, 刘建涛1,2, 贾建1,2, 张义文1,2( ) |
1钢铁研究总院 高温材料研究所 北京 100081 2北京钢研高纳科技股份有限公司 北京 100081 3东北大学 材料科学与工程学院 沈阳 110819 |
|
Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy |
BAI Jiaming1,2,3, LIU Jiantao1,2, JIA Jian1,2, ZHANG Yiwen1,2( ) |
1High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co. Ltd., Beijing 100081, China 3School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
白佳铭, 刘建涛, 贾建, 张义文. 高W高Ta型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
Jiaming BAI,
Jiantao LIU,
Jian JIA,
Yiwen ZHANG.
Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. Acta Metall Sin, 2023, 59(9): 1230-1242.
1 |
Pollock T M. Alloy design for aircraft engines [J]. Nat. Mater., 2016, 15: 809
doi: 10.1038/nmat4709
pmid: 27443900
|
2 |
Gabb T P, Telesman J, Kantzos P T, et al. Characterization of the temperature capabilities of advanced disk alloy ME3 [R/OL]. (2005-6-1)[2021-3-6].
|
3 |
Powell A, Bain K, Wessman A, et al. Advanced supersolvus nickel powder disk alloy doe: Chemistry, properties, phase formations and thermal stability [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Hoboken, New Jersey: John Wiley & Sons Inc., 2016: 187
|
4 |
Fu C L, Reed R, Janotti A, et al. On the diffusion of alloying elements in the nickel-base superalloys [A], Superalloys 2004: Proceedings of the Tenth International Symposium of superalloys [C]. Warrendale, Pennsylvania: The Minerals, Metals & Materials Society, 2004: 867
|
5 |
Bai J M, Zhang H P, Liu J T, et al. Investigation of room temperature strengthening mechanism on PM Ni-base superalloys with tantalum addition [J]. Mater. Charact., 2022, 191: 112089
doi: 10.1016/j.matchar.2022.112089
|
6 |
Razumovskiy V I, Lozovoi A Y, Razumovskii I M. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion [J]. Acta Mater., 2015, 82: 369
doi: 10.1016/j.actamat.2014.08.047
|
7 |
Zhang Y W, Hu B F. Function of microelement Hf in powder metallurgy nickel-based superalloys [J]. Acta Metall. Sin., 2015, 51: 967
doi: 10.11900/0412.1961.2014.00704
|
7 |
张义文, 胡本芙. 镍基粉末高温合金中微量元素Hf的作用 [J]. 金属学报, 2015, 51: 967
|
8 |
Gao S, Hou J S, Yang F, et al. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700oC [J]. J. Alloys Compd., 2017, 729: 903
doi: 10.1016/j.jallcom.2017.09.194
|
9 |
Gao S, Hou J S, Yang F, et al. Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy [J]. Mater. Sci. Eng., 2017, A706: 153
|
10 |
Berthod P, Aranda L, Vébert C, et al. Experimental and thermodynamic study of the high temperature microstructure of tantalum containing nickel-based alloys [J]. Calphad, 2004, 28: 159
doi: 10.1016/j.calphad.2004.07.005
|
11 |
Meng Z Y, Sun G C, Li M L, et al. The Strengthening effect of tantalum in nickel-base superalloys [A], Superalloys 1984: Proceedings of the Fifth International Symposium on Superalloys [C]. Warrendale, Pennsylvania: The Metallurgical Society of AIME, 1984: 563
|
12 |
Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2001, 32A: 2409
|
13 |
Smith T M, Gabb T P, Wertz K N, et al. Enhancing the creep strength of next-generation disk superalloys via local phase transformation strengthening [A], Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys [C]. Cham, Switzerland: Springer Nature Switzerland AG, 2020: 726
|
14 |
Smith T M, Esser B D, Antolin N, et al. Phase transformation strengthening of high-temperature superalloys[J]. Nat. Commun., 2016, 7: 13434
doi: 10.1038/ncomms13434
pmid: 27874007
|
15 |
HiraShuji, TanakaYoshinosuke, MiyoshiEiji et, al, Translateby Guo T W, LiA D, XuJ P. High Temperature Strength of Metallic Materials: Theory and Design [M]. Beijing: Science Press, 1983: 65
|
15 |
平修二, 田中吉之助, 三好荣次等著. 郭廷玮, 李安定, 徐介平译. 金属材料的高温强度 : 理论·设计 [M]. 北京: 科学出版社, 1983: 65
|
16 |
Smith T M, Unocic R R, Deutchman H, et al. Creep deformation mechanism mapping in nickel base disk superalloys [J]. Mater. High Temp., 2016, 33: 372
doi: 10.1080/09603409.2016.1180858
|
17 |
Bai J M, Zhang H P, Li X Y, et al. Evolution of creep rupture mechanism in advanced powder metallurgy superalloys with tantalum addition [J]. J. Alloys Compd., 2022, 925: 166713
doi: 10.1016/j.jallcom.2022.166713
|
18 |
Chen Q Z, Knowles D M. Mechanism of 〈112〉/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750oC and 750 MPa [J]. Mater. Sci. Eng., 2003, A356: 352
|
19 |
Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys [J]. Prog. Mater. Sci., 2009, 54: 839
doi: 10.1016/j.pmatsci.2009.03.010
|
20 |
Sarosi P M, Viswanathan G B, Mills M J. Direct observation of an extended complex stacking fault in the γ′ phase of a Ni-base superalloy [J]. Scr. Mater., 2006, 55: 727
doi: 10.1016/j.scriptamat.2006.06.019
|
21 |
Suzuki H. Segregation of solute atoms to stacking faults [J]. J. Phys. Soc. Jpn, 1962, 17: 322
doi: 10.1143/JPSJ.17.322
|
22 |
Viswanathan G B, Shi R, Genc A, et al. Segregation at stacking faults within the γ' phase of two Ni-base superalloys following intermediate temperature creep [J]. Scr. Mater., 2015, 94: 5
doi: 10.1016/j.scriptamat.2014.06.032
|
23 |
Zhang Y W, Liu J T, Jia J, et al. Development of powder metallurgy superalloy [J]. Powder Metall. Ind., 2022, 32(6): 150
|
23 |
张义文, 刘建涛, 贾 建 等. 粉末高温合金研究进展 [J]. 粉末冶金工业, 2022, 32(6): 150
|
24 |
Zhang Y W, Liu J T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
|
24 |
张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
|
25 |
Yuan Y, Gu Y F, Cui C Y, et al. A novel strategy for the design of advanced engineering alloys-strengthening turbine disk superalloys via twinning structures [J]. Adv. Eng. Mater., 2011, 13: 296
doi: 10.1002/adem.v13.4
|
26 |
Tang Y L, Liu J T, Cheng H W, et al. Effect of hafnium on annealing twin formation in as-hot isostatically pressed nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2019, 772: 949
doi: 10.1016/j.jallcom.2018.09.025
|
27 |
Larson F R, Miller J. A time-temperature relationship for rupture and creep stresses [J]. Trans. ASME, 1952, 74: 765
|
28 |
Dyson B F, McLean M. Creep deformation of engineering alloys: Developments from physical modelling [J]. ISIJ Int., 1990, 30: 802
doi: 10.2355/isijinternational.30.802
|
29 |
Unocic R R, Sarosi P M, Viswanathan G B, et al. The creep deformation mechanisms of nickel base superalloy René104 [J]. Microsc. Microanal., 2005, 11: 1874
|
30 |
Unocic R R, Kovarik L, Shen C, et al. Deformation mechanisms in Ni-base disk superalloys at higher temperatures [A], Superalloys 2008: Proceedings of the 11th Intenational Symposium of Superalloys [C]. Hoboken, New Jersey: John Wiley & Sons Inc., 2008: 377
|
31 |
Viswanathan G B, Sarosi P M, Whitis D H, et al. Deformation mechanisms at intermediate creep temperatures in the Ni-base superalloy René88DT [J]. Mater. Sci. Eng., 2005, A400: 489
|
32 |
Bai J M, Zhang H P, Liu J T, et al. Temperature dependence of tensile deformation mechanisms in a powder metallurgy Ni-Co-Cr based superalloy with Ta addition [J]. Mater. Sci. Eng., 2022, A856: 143965
|
33 |
Kim K H. Digitalmicrograph script source listing for a geometric phase analysis [J]. Appl. Microsc., 2015, 45: 101
doi: 10.9729/AM.2015.45.2.101
|
34 |
Smith T M, Esser B D, Good B, et al. Segregation and phase transformations along superlattice intrinsic stacking faults in Ni-Based superalloys [J]. Metall. Mater Trans., 2018, 49A: 4186
|
35 |
Wen Y-F, Sun J, Huang J. First-principles study of stacking fault energies in Ni3Al intermetallic alloys [J]. Trans. Nonferrous Metall. Soc. China, 2012, 22: 661
doi: 10.1016/S1003-6326(11)61229-6
|
36 |
Zhang H, Pei Y B, Gong X F, et al. Deformation nanotwins in a single-crystal Ni-based superalloy at room temperature and low strain rate [J]. Mater. Charact., 2022, 187: 111865
doi: 10.1016/j.matchar.2022.111865
|
37 |
Yu X X, Wang C Y. Effect of alloying element on dislocation cross-slip in γ'-Ni3Al: A first-principles study [J]. Philos. Mag., 2012, 92: 4028
doi: 10.1080/14786435.2012.700419
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|