|
|
压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望 |
常立涛( ) |
中国科学院上海应用物理研究所 上海 201800 |
|
Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective |
CHANG Litao( ) |
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
引用本文:
常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
Litao CHANG.
Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. Acta Metall Sin, 2023, 59(2): 191-204.
1 |
Fujimori H, Sanchez I G, Gott K, et al. Stress Corrosion Cracking in Light Water Reactors: Good Practices and Lessons Learned, IAEA Nuclear Energy Series No. NP-T-3.13[M]. Vienna: International Atomic Energy Agency, 2011: 5
|
2 |
Guo S, Han E H, Wang H T, et al. Life prediction for stress corrosion behavior of 316L stainless steel elbow of nuclear power plant[J]. Acta Metall. Sin., 2017, 53: 455
|
2 |
郭 舒, 韩恩厚, 王海涛 等. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53: 455
|
3 |
Deng P, Sun C, Peng Q J, et al. Study on irradiation assisted stress corrosion cracking of nuclear grade 304 stainless steel[J]. Acta Metall. Sin., 2019, 55: 349
doi: 10.11900/0412.1961.2018.00359
|
3 |
邓 平, 孙 晨, 彭群家 等. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55: 349
|
4 |
Tice D R, Addepalli V, Mottershead K J, et al. Microstructural effects on stress corrosion initiation in austenitic stainless steel in PWR environments[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 775
|
5 |
Tribouilloy L, Vaillant F, Olive J M, et al. Stress corrosion cracking on cold-worked austenitic stainless steels in PWR environment[J]. Adv. Mater. Sci., 2007, 7: 61
|
6 |
Couvant T, Legras L, Pokor C, et al. Investigations on the mechanisms of PWSCC of strain hardened austenitic stainless steels[A]. 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Whistler, BC, Canada: Canadian Nuclear Society, 2007: 1
|
7 |
Huguenin P, Vaillant F, Couvant T, et al. EDF program on SCC initiation of cold-worked stainless steels in primary water[A]. Corrosion from the Nano Scale to the Plant[C]. Nice, France: The European Corrosion Congress, 2009: INIS-FR-10-Eur-09-8048
|
8 |
Wright D M. The effect of cold rolling on the susceptibility of austenitic stainless steel to stress corrosion cracking in primary circuit pressurised water reactor environment[D]. Manchester: University of Manchester, 2012
|
9 |
Hosler R, Fyfitch S, Malikowski H, et al. Review of stress corrosion cracking of pressure boundary stainless steel in pressurized water reactors and the need for long-term industry guidance[A]. 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Asheville, North Carolina, USA: NACE International, 2013: 1468
|
10 |
Nouraei S, Tice D R, Mottershead K J, et al. Effects of thermo-mechanical treatments on deformation behavior and IGSCC susceptibility of stainless steels in PWR primary water chemistry[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 2381
|
11 |
Arioka K, Yamada T, Terachi T, et al. Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114
doi: 10.5006/1.3278329
|
12 |
Couvant T, Legras L, Vaillant F, et al. Effect of strain-hardening on stress corrosion cracking of AISI 304L stainless steel in PWR primary environment at 360oC[A]. 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Salt Lake City, USA: TMS, 2005: 1069
|
13 |
Song M, Field K G, Cox R M, et al. Microstructural characterization of cold-worked 316 stainless steel flux thimble tubes irradiated up to 100 dpa in a commercial pressurized water reactor[J]. J. Nucl. Mater., 2020, 541: 152400
doi: 10.1016/j.jnucmat.2020.152400
|
14 |
Tice D R, Nouraei S, Mottershead K J, et al. Effects of cold work and sensitization on stress corrosion cracking of austenitic stainless steels in PWR Primary coolant conditions[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 158
|
15 |
Chang L T, Burke M G, Scenini F. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water[J]. Corros. Sci., 2018, 138: 54
doi: 10.1016/j.corsci.2018.04.003
|
16 |
Andresen P L, Morra M M. IGSCC of non-sensitized stainless steels in high temperature water[J]. J. Nucl. Mater., 2008, 383: 97
doi: 10.1016/j.jnucmat.2008.08.005
|
17 |
Saukkonen T, Aalto M, Virkkunen I, et al. Plastic strain and residual stress distributions in an AISI 304 stainless steel BWR pipe weld[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 2351
|
18 |
Yonezawa T, Watanabe M, Hashimoto A, et al. Effect of strain hardened inner surface layers on stress corrosion cracking of type 316 stainless steel in simulated PWR primary water[J]. Metall. Mater. Trans., 2019, 50A: 2462
|
19 |
Staehle R W. Quantitative micro-nano (QMN) approach to SCC mechanism and prediction-starting a third meeting[A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2011: 1535
|
20 |
Ming H L, Zhang Z M, Wang J Z, et al. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR[J]. Appl. Surf. Sci., 2015, 337: 81
doi: 10.1016/j.apsusc.2015.02.066
|
21 |
Olszta M J, Thomas L E, Asano K, et al. Crack initiation precursors originating from surface grinding[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 549
|
22 |
Kaneda J, Tamako H, Ishibashi R, et al. Effects of surface treatments on microstructure, hardness and residual stress in type 316L stainless steel[A]. 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems[C]. Virginia Beach, VA: American Nuclear Society, 2009: 791
|
23 |
Ziemniak S E, Hanson M, Sander P C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2008, 50: 2465
doi: 10.1016/j.corsci.2008.06.032
|
24 |
Zhang W Q, Fang K W, Hu Y J, et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel[J]. Corros. Sci., 2016, 108: 173
doi: 10.1016/j.corsci.2016.03.008
|
25 |
Wang S Y, Hu Y J, Fang K W, et al. Effect of surface machining on the corrosion behaviour of 316 austenitic stainless steel in simulated PWR water[J]. Corros. Sci., 2017, 126: 104
doi: 10.1016/j.corsci.2017.06.019
|
26 |
Cissé S, Laffont L, Tanguy B, et al. Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water[J]. Corros. Sci., 2012, 56: 209
doi: 10.1016/j.corsci.2011.12.007
|
27 |
Huin N, Calonne O, Herbst M, et al. SCC of austenitic stainless steels under off-normal water chemistry and surface conditions[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 849
|
28 |
Chang L T, Mukahiwa K, Duff J, et al. The effect of low temperature heat treatment on stress corrosion crack initiation in machined 316L stainless steel in high-temperature hydrogenated water[J]. Scr. Mater., 2021, 195: 113742
doi: 10.1016/j.scriptamat.2021.113742
|
29 |
Chang L T, Burke M G, Scenini F. Understanding the effect of surface finish on stress corrosion crack initiation in warm-forged stainless steel 304L in high-temperature water[J]. Scr. Mater., 2019, 164: 1
doi: 10.1016/j.scriptamat.2019.01.032
|
30 |
Chang L T, Mukahiwa K, Volpe L, et al. Effect of machining on oxide development in type 316L stainless steel in high-temperature hydrogenated water[J]. Corros. Sci., 2021, 186: 109444
doi: 10.1016/j.corsci.2021.109444
|
31 |
Chang L T, Burke M G, Mukahiwa K, et al. The effect of martensite on stress corrosion crack initiation of austenitic stainless steels in high-temperature hydrogenated water[J]. Corros. Sci., 2021, 189: 109600
doi: 10.1016/j.corsci.2021.109600
|
32 |
Chang L T, Volpe L, Wang Y L, et al. Effect of machining on stress corrosion crack initiation in warm-forged type 304L stainless steel in high temperature water[J]. Acta Mater., 2019, 165: 203
doi: 10.1016/j.actamat.2018.11.046
|
33 |
Chang L T, Duff J, Burke M G, et al. SCC Initiation in the machined austenitic stainless steel 316L in simulated PWR primary water[A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Cham: Springer, 2019: 811
|
34 |
Liao Z R, La Monaca A, Murray J, et al. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms[J]. Int. J. Mach. Tools Manuf., 2021, 162: 103687
doi: 10.1016/j.ijmachtools.2020.103687
|
35 |
M'Saoubi R, Outeiro J C, Changeux B, et al. Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels[J]. J. Mater. Process. Technol., 1999, 96: 225
doi: 10.1016/S0924-0136(99)00359-3
|
36 |
Zhang W Q, Wang X L, Hu Y J, et al. Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel[J]. Int. J. Mach. Tools Manuf., 2018, 130-131: 36
doi: 10.1016/j.ijmachtools.2018.03.008
|
37 |
Jang D Y, Watkins T R, Kozaczek K J, et al. Surface residual stresses in machined austenitic stainless steel[J]. Wear, 1996, 194: 168
doi: 10.1016/0043-1648(95)06838-4
|
38 |
Outeiro J C, Pina J C, M'Saoubi R, et al. Analysis of residual stresses induced by dry turning of difficult-to-machine materials[J]. CIRP Ann., 2008, 57: 77
doi: 10.1016/j.cirp.2008.03.076
|
39 |
La Monaca A, Axinte D A, Liao Z R, et al. Towards understanding the thermal history of microstructural surface deformation when cutting a next generation powder metallurgy nickel-base superalloy[J]. Int. J. Mach. Tools Manuf., 2021, 168: 103765
doi: 10.1016/j.ijmachtools.2021.103765
|
40 |
Das A, Roychowdhury S, Kain V. Effect of surface state of austenitic type 304L SS on oxide characteristics formed in high temperature high pressure water[J]. J. Nucl. Mater., 2022, 564: 153672
doi: 10.1016/j.jnucmat.2022.153672
|
41 |
Yan H L, Wang J Q, Zhang Z M, et al. Effects of cutting parameter on microstructure and corrosion behavior of 304 stainless steel in simulated primary water[J]. J. Mater. Sci. Technol., 2022, 122: 219
doi: 10.1016/j.jmst.2021.04.081
|
42 |
Turnbull A, Mingard K, Lord J D, et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure[J]. Corros. Sci., 2011, 53: 3398
doi: 10.1016/j.corsci.2011.06.020
|
43 |
Jaffré K, Abe H, Ter-Ovanessian B, et al. Influence of mechanical surface treatments on oxide properties formed on 304L stainless steel in simulated BWR and PWR primary water[J]. J. Nucl. Mater., 2021, 556: 153258
doi: 10.1016/j.jnucmat.2021.153258
|
44 |
Cui T M, Xu X H, Pan D, et al. Effects of surface treatments and temperature on the oxidation behavior of 308L stainless steel cladding in hydrogenated high-temperature water[J]. J. Nucl. Mater., 2022, 565: 153741
doi: 10.1016/j.jnucmat.2022.153741
|
45 |
Ming T Y, Xue H, Zhang T, et al. Improving the corrosion and stress corrosion cracking resistance of 316L stainless steel in high temperature water by water jet cavitation peening[J]. Surf. Coat. Technol., 2022, 438: 128420
doi: 10.1016/j.surfcoat.2022.128420
|
46 |
Soulas R, Cheynet M, Rauch E, et al. TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment[J]. J. Mater. Sci., 2013, 48: 2861
doi: 10.1007/s10853-012-6975-0
|
47 |
Ramachandran D, Egoavil R, Crabbe A, et al. TEM and AES investigations of the natural surface nano‐oxide layer of an AISI 316L stainless steel microfibre[J]. J. Microsc., 2016, 264: 207
doi: 10.1111/jmi.12434
|
48 |
Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2002, 44: 2209
doi: 10.1016/S0010-938X(02)00004-5
|
49 |
Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen[J]. J. Nucl. Sci. Technol., 2008, 45: 975
doi: 10.1080/18811248.2008.9711883
|
50 |
Lozano-Perez S, Yamada T, Terachi T, et al. Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content[J]. Acta Mater., 2009, 57: 5361
doi: 10.1016/j.actamat.2009.07.040
|
51 |
Lozano-Perez S, Kruska K, Iyengar I, et al. The role of cold work and applied stress on surface oxidation of 304 stainless steel[J]. Corros. Sci., 2012, 56: 78
doi: 10.1016/j.corsci.2011.11.021
|
52 |
Han G D, Lu Z P, Ru X K, et al. Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment[J]. J. Nucl. Mater., 2015, 467: 194
doi: 10.1016/j.jnucmat.2015.09.029
|
53 |
Das A, Roychowdhury S, Kain V. Establishing the passive film stability formed at different depths from the surface of machined type 304 L SS[J]. Corros. Sci., 2020, 176: 109022
doi: 10.1016/j.corsci.2020.109022
|
54 |
Kuang W J, Was G S. The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690[J]. Corros. Sci., 2015, 97: 107
doi: 10.1016/j.corsci.2015.04.020
|
55 |
Kuang W J, Was G S. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water[J]. Scr. Mater., 2015, 107: 107
doi: 10.1016/j.scriptamat.2015.05.033
|
56 |
Wang M, Song M, Lear C R, et al. Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals[J]. J. Nucl. Mater., 2019, 515: 52
doi: 10.1016/j.jnucmat.2018.12.015
|
57 |
Zhong X Y, Bali S C, Shoji T. Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment[J]. Corros. Sci., 2017, 115: 106
doi: 10.1016/j.corsci.2016.11.019
|
58 |
Scenini F, Govender K, Lyon S, et al. An investigation of SCC susceptibility of virgin and ruthenium-modified austenitic stainless steels in high-temperature oxygenated water by SSRT testing[A]. CORROSION 2012[C]. Salt Lake City, UT, USA: NACE International, 2012: 4069
|
59 |
Zhong X Y, Bali S C, Shoji T. Effects of dissolved hydrogen and surface condition on the intergranular stress corrosion cracking initiation and short crack growth behavior of non-sensitized 316 stainless steel in simulated PWR primary water[J]. Corros. Sci., 2017, 118: 143
doi: 10.1016/j.corsci.2017.02.003
|
60 |
Du D H, Chen K, Yu L, et al. SCC crack growth rate of cold worked 316L stainless steel in PWR environment[J]. J. Nucl. Mater., 2015, 456: 228
doi: 10.1016/j.jnucmat.2014.09.054
|
61 |
Huang Q, Charles Y, Duhamel C, et al. Influence of the combination of microstructure and mechanical fields on stress corrosion cracking initiation of cold-worked austenitic stainless steels[A]. 19th International Conference on on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 967
|
62 |
Roychowdhury S, Kain V, Neogy S, et al. Understanding the effect of nitrogen in austenitic stainless steel on the intergranular stress corrosion crack growth rate in high temperature pure water[J]. Acta Mater., 2012, 60: 610
doi: 10.1016/j.actamat.2011.09.053
|
63 |
Meng F J, Lu Z P, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations[J]. Corros. Sci., 2011, 53: 2558
doi: 10.1016/j.corsci.2011.04.013
|
64 |
Chen J J, Lu Z P, Xiao Q, et al. The effects of cold rolling orientation and water chemistry on stress corrosion cracking behavior of 316L stainless steel in simulated PWR water environments[J]. J. Nucl. Mater., 2016, 472: 1
doi: 10.1016/j.jnucmat.2016.01.018
|
65 |
Terachi T, Fujii K, Arioka K. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320oC[J]. J. Nucl. Sci. Technol., 2005, 42: 225
doi: 10.1080/18811248.2005.9726383
|
66 |
Guerre C, Raquet O, Herms E, et al. SCC crack growth rate of cold-worked austenitic stainless steels in PWR primary water conditions[A]. 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Whistler, BC, Canada: Canadian Nuclear Society, 2007: 1
|
67 |
Kumagai M, Curd M E, Soyama H, et al. Depth-profiling of residual stress and microstructure for austenitic stainless steel surface treated by cavitation, shot and laser peening[J]. Mater. Sci. Eng., 2021, A813: 141037
|
68 |
Volpe L, Burke M G, Scenini F. Correlation between grain boundary migration and stress corrosion cracking of alloy 600 in hydrogenated steam[J]. Acta Mater., 2020, 186: 454
doi: 10.1016/j.actamat.2020.01.020
|
69 |
Volpe L, Burke M G, Scenini F. Oxidation behaviour of solution-annealed and thermally-treated Alloy 690 in low pressure H2-steam[J]. Corros. Sci., 2020, 167: 108514
doi: 10.1016/j.corsci.2020.108514
|
70 |
Volpe L, Bertali G, Curioni M, et al. Replicating PWR primary water conditions in low pressure H2/steam environment to study alloy 600 oxidation processes[J]. J. Electrochem. Soc., 2019, 166: C1
doi: 10.1149/2.0081902jes
|
71 |
Zhai Z Q, Toloczko M B, Olszta M J, et al. Stress corrosion crack initiation of alloy 600 in PWR primary water[J]. Corros. Sci., 2017, 123: 76
doi: 10.1016/j.corsci.2017.04.013
|
72 |
Zhai Z Q, Toloczko M B, Bruemmer S M. Effect of material condition on stress corrosion crack initiation of cold-worked alloy 600 in simulated PWR primary water[A]. 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 539
|
73 |
Zhai Z Q, Olszta M J, Toloczko M B, et al. Crack initiation behavior of cold-worked alloy 690 in simulated PWR primary water—Role of starting microstructure, applied stress and cold work on precursor damage evolution[A]. 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors[C]. Boston, MA, USA: American Nuclear Society, 2019: 373
|
74 |
Zhang W Q, Wang X L, Wang S Y, et al. Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water[J]. Corros. Sci., 2021, 190: 109644
doi: 10.1016/j.corsci.2021.109644
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|