Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 397-405    DOI: 10.11900/0412.1961.2016.00294
  本期目录 | 过刊浏览 |
6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究
陈思含1,梁田2(),张龙2,马颖澈2,刘政军1,刘奎2
1 沈阳工业大学材料科学与工程学院 沈阳 1108702 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel
Sihan CHEN1,Tian LIANG2(),Long ZHANG2,Yingche MA2,Zhengjun LIU1,Kui LIU2
1 School of Maerials Science and Engineering Shenyang University of Technology, Shenyang 110870, China
2 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
Sihan CHEN, Tian LIANG, Long ZHANG, Yingche MA, Zhengjun LIU, Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. Acta Metall Sin, 2017, 53(4): 397-405.

全文: PDF(4495 KB)   HTML
摘要: 

利用OM、SEM、XRD和TEM等方法对6%Si铸态高硅奥氏体不锈钢在不同固溶处理温度下的bcc相的演变规律进行了研究,分析了不同固溶处理温度下组织中bcc相的回溶与重新析出过程中元素变化、形貌和结构特征,并制定合理的热处理制度。结果表明,6%Si高硅不锈钢铸态组织中的析出相主要为bcc相,该相沿晶界和枝晶间分布,并富含Mo、Si、Ni等元素,晶格常数a=0.8747 nm。样品在1050~1200 ℃、2 h固溶处理时,bcc析出相中的Mo、Cr元素含量随温度的升高而增加;当温度达到1200 ℃时bcc相发生回溶,在1250 ℃、2 h固溶处理时bcc相重新析出。

关键词 6%Si铸态高硅奥氏体不锈钢bcc相回溶重析出    
Abstract

After decades of development, high silicon austenitic stainless steels are widely concerned about due to their excellent corrosion resistance and good mechanical properties. Till now, 4%Si high silicon stainless steel has been widely used, but it is not doing well under the condition of high temperature and strong oxidizing medium. 6%Si high silicon austenitic stainless steels can resist in the strong oxidizing medium when the temperature is up to 100 ℃. But the increasing of Si may lead to the increasing of precipitation such as bcc phase, which may cause hot cracks during heat processing. As a result, obtaining a temperature range which is without precipitation is essential. The bcc phase evolution mechanism of 6%Si as-cast high silicon austenitic stainless steel under different solid solution treatment temperature was investigated by means of OM, SEM, XRD and TEM in this work. In order to study the precipitation and re-dissolution of bcc phase, the distribution of alloy elements, morphology and crystal structure of the bcc phase were analyzed under different solution treatments. Moreover, the heat-treated schedules were made based on the experimental results. The results indicated that the solid solution treatment temperatures had a great influence on the microstructure of 6%Si high silicon austenitic stainless steel. The precipitates existed in the as-cast structure were mainly bcc phase with a lattice constant of 0.8747 nm, rich in Mo, Si and Ni elements, and distributed in grain interior and grain boundary. The bcc phase redissolved during the solution when the temperature was between 1050~1200 ℃ for 2 h. The contents of Mo, Si and Ni increased with the rising solution temperature. Furthermore, the bcc phase re-precipitated when the test specimen was heat treated at 1250 ℃ for 2 h. The re-precipitated phase has the same composition with that in the as-cast structure. Thus the optimal solid solution treatment temperature of 6%Si high silicon austenitic stainless is 1100~1200 ℃ for 2 h.

Key words6%Si as-cast high silicon austenitic stainless steel    bcc phase    re-dissolution    re-precipitation
收稿日期: 2016-07-08     
图1  平衡态下6%Si高硅奥氏体不锈钢析出相含量与温度之间的关系
图2  平衡态下6%Si高硅奥氏体不锈钢bcc相凝固规律
图3  6%Si高硅不锈钢铸锭边部(1/2半径)和中心位置的OM像
图4  6%Si高硅不锈钢铸锭的SEM像
图5  6%Si高硅不锈钢铸态组织的XRD谱
图6  6%Si高硅不锈钢铸态组织的TEM像及析出相的SAED谱
Phase Si Cr Mn Fe Ni Mo Total
bcc 10.28±0.38 20.47±1.07 1.96±0.79 35.92±1.35 26.50±1.01 4.86±0.31 100.00
γ 5.51±0.39 19.22±0.37 1.22±0.15 50.14±1.13 22.48±0.34 0.93±0.15 100.00
表1  6%Si高硅不锈钢铸态组织析出相成分
图7  不同热处理温度下保温120 min铸态样品的SEM像
图8  不同固溶温度下析出相析出量统计
Temperature Point Si Cr Mn Fe Ni Mo Total
1050 1 8.82±0.41 23.57±0.60 1.23±0.25 40.34±1.94 17.63±0.91 8.40±1.35 100
1100 2 9.00±0.50 23.79±0.59 1.38±0.22 38.25±0.57 18.43±0.52 9.16±0.49 100
1250 3 11.74±1.10 18.27±1.41 1.66±0.40 32.46±1.89 26.87±1.42 4.64±1.50 100
表2  图7中bcc析出相的EDS分析
图9  6%Si高硅不锈钢1250 ℃、120 min固溶处理后的XRD谱
图10  6%Si高硅不锈钢固溶处理1250 ℃的TEM像及SAED谱
图11  6%Si高硅奥氏体不锈钢的DSC曲线
[1] Li Z Q.Research status and development trends of high silicon stainless steel and high nickel alloy for concentrated sulphuric acid[J]. Chem. Eng. Mach., 1998, 25(1): 50
[1] (李志强. 耐浓硫酸用高硅不锈钢和高硅镍合金研究现状与趋势[J]. 化工机械, 1998, 25(1): 50)
[2] Armijo J S, Wilde B C.Influence of Si content on the corrosion resistance of austenitic Fe-Cr-Ni alloys in oxidizing acids[J]. Corros. Sci., 1968, 8: 649
[3] Qiu D L, Liu H A, Zhao C Y.Application of DS-1 high silicon austenitic stainless steel plate in the sulfuric acid industry[J]. S. P. BMH. Rel. Eng., 2005, (1): 18
[3] (邱德良, 刘焕安, 赵成永. DS-1高硅奥氏体不锈钢板在硫酸工业中的应用[J]. 硫磷设计与粉体工程, 2005, (1): 18)
[4] Burstein G T, Daymond B T.The remarkable passivity of austenitic stainless steel in sulphuric acid solution and the effect of repetitive temperature cycling[J]. Corros. Sci., 2009, 51: 2249
[5] Chang F H, Pan F.Welding practice for the Sandvik duplex stainless steels SAF2304, SAF2205 and SAF2507[J]. Boiler Manuf., 1995, (1): 64
[5] (常凤华, 潘孚. SAF2304、SAF2205和SAF2507级别Sandvik双相不锈钢的焊接技巧[J]. 锅炉制造, 1995, (1): 64)
[6] Du C C.Application of austenitic stainless steel in industry[J]. Process Equip. Pip., 2003, 40(2): 54
[6] (杜存臣. 奥氏体不锈钢在工业中的应用[J]. 化工设备与管道, 2003, 40(2): 54)
[7] Liu H A.A survey of research and development of stainless steels for sulphuric acid service[J]. Sul. Acid Ind., 1999, (1): 1
[7] (刘焕安. 硫酸用不锈钢研究发展综述[J]. 硫酸工业, 1999, (1): 1)
[8] Gang Y M.Development and selection of nitric acid resistance steel[J]. Chem. Eng. Des., 14(3): 6
[8] (冈毅民. 硝酸用钢的发展及其选择 [J]. 化工设计, 2004, 14(3): 6)
[9] Ma Y H, Huang Y W.The influence of high silicon content on the corrosion behaviors of stainless steel in highly concentrated sulfuric acid[J]. Shanghai Met., 1999, 21(5): 27
[9] (马艳红, 黄元伟. 高硅对不锈钢耐高温浓硫酸腐蚀行为的影响[J]. 上海金属, 1999, 21(5): 27)
[10] Li H, Feng Y L, Qi X J, et al.Study on microstructure and precipitates at different normalizing in Fe-3.15%Si low temperature oriented silicon steel[J]. Acta Metall. Sin., 2013, 49: 562
[10] (李慧, 冯运莉, 齐雪京等. Fe-3.15%Si低温取向硅钢不同常化工艺下的组织及析出相研究[J]. 金属学报, 2013, 49: 562)
[11] Bratukhin A G, Petrakov A F, Krivonogov G S, et al.Structure and properties of high-strength corrosion-resistant silicon-alloyed sheet steel[J]. Met. Sci. Heat Treat., 1993, 35: 12
[12] Chen X, Li Y X.Effect of silicon content on the microstructure and mechanical properties of austempered high silicon cast steel[J]. Mater. Mech. Eng., 2000, 24(2): 14
[12] (陈祥, 李言祥. 硅对等温淬火高硅铸钢组织和性能的影响[J]. 机械工程材料, 2000, 24(2): 14
[13] Wang G L.Chemical composition of wear resistant cast steel and optimization design of heat treatment process[J]. Hot Working Technol., 2011, 40(9): 39
[13] (王桂林. 高硅耐磨铸钢化学成分和热处理工艺的优化设计[J]. 热加工工艺, 2011, 40(9): 39)
[14] Ou J Y, Wang N X.A study for microstructure and corrosion resistance of nitric acid corrosion resistance of several high silicon steel[J]. Spec. Steel, 1981, (4): 61
[14] (欧金玉, 王乃宣. 关于几种高硅抗浓硝酸腐蚀用钢的组织和耐腐蚀性能的探讨[J]. 特殊钢, 1981, (4): 61)
[15] Liu H A, Ye J X.Development and application of XDS-1 high silicon austenitic stainless steel for high temperature concentrated sulfuric acid[J]. S. P. BMH. Rel. Eng., 2007, (4): 25
[15] (刘焕安, 叶际宣. 高温浓硫酸用XDS-1高硅奥氏体不锈钢的研制与应用[J]. 硫磷设计与粉体工程, 2007, (4): 25)
[16] Wen Y H, Zhang W H, Si H T, et al.Study on work hardening behaviour and mechanism of high silicon austenitic high manganese steel[J]. Acta Metall. Sin., 2012, 48: 1153
[16] (文玉华, 张万虎, 司海涛等. 高Si奥氏体高Mn钢加工硬化行为及机制的研究[J]. 金属学报, 2012, 48: 1153)
[17] Chen X, Li Y X, Fu H G.Fracture toughness of austempered high silicon cast steel[J]. Acta Metall. Sin., 2005, 41: 1061
[17] (陈祥, 李言祥, 符寒光. 等温淬火高硅铸钢的断裂韧性[J]. 金属学报, 2005, 41: 1061)
[18] Liu P.Application of new material-C4 steel (00Cr14Ni14Si4) in fuming nitric acid absorption column[J]. Petro Chem. Equip., 2007, 10(4): 63
[18] (刘萍. 发烟硝酸吸收塔新材料C4钢的应用[J]. 石油和化工设备, 2007, 10(4): 63)
[19] Shen W B, Cai X Q, Shao Y.R&D concerning manufacturing process and technology of seamless tube of KY 704 Hi-silica austenitic stainless steel[J]. Steel Pipe, 2001, 30(5): 17
[19] (沈伟彬, 蔡新强, 邵羽. KY704高硅奥氏体不锈钢无缝管生产工艺研究及技术开发[J]. 钢管, 2001, 30(5): 17)
[20] Ogundare O, Babatope B, Adetunji A R, et al.Atmospheric corrosion studies of ductile iron and austenitic stainless steel in an extreme marine environment[J]. J. Miner. Mater. Charact. Eng., 2012, 11: 914
[21] Tomashov N D, Chernova G P.Passivity and Protection of Metals Against Corrosion[M]. US: Springer, 1967: 91
[22] Weiss B, Stickler R.Phase instabilities during high temperature exposure of 316 austenitic stainless steel[J]. Metall. Trans., 1972, 3: 851
[23] Sourmail T.Precipitation in creep resistant austenitic stainless steels[J]. Mater. Sci. Technol., 2001, 17: 1
[24] Brózda J, Madej J.Cracking of the mixing chamber caused by sigma phase precipitation in austenitic steel welded joints[J]. Eng. Fail. Anal., 2008, 15: 368
[25] Perron A, Toffolon-Masclet C, Ledoux X, et al.Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations[J]. Acta Mater., 2014, 79: 16
[26] Roychowdhury S, Kain V, Matcheswala A, et al.σ-Phase induced embrittlement in titanium containing austenitic stainless steel tie-bars in a condenser[J]. Eng. Fail. Anal., 2012, 25: 123
[1] 张麦仓,曹国鑫,董建新,郑磊,姚志浩. 基于经典动态模型的GH4169合金钢锭中Laves相的回溶规律分析[J]. 金属学报, 2013, 49(3): 372-378.
[2] 张鹏程; 武会宾; 唐荻; 黄国建; 王路兵 . Nb--V--Ti和V--Ti微合金钢中碳氮化物的回溶行为[J]. 金属学报, 2007, 43(7): 753-758 .
[3] 宋雪雁;雷永泉;张孝彬;张泽;陈立新;杨晓光;吕光烈;张文魁;王启东. Ti对Zr—Mn—V—Ni系合金的微结构和电化学性能的影响[J]. 金属学报, 1998, 34(9): 977-982.
[4] 姚大平;胡壮麒;张匀;师昌绪. 二元Al-Li合金的沉淀反应[J]. 金属学报, 1990, 26(2): 46-51.