Please wait a minute...
金属学报  2023, Vol. 59 Issue (10): 1411-1418    DOI: 10.11900/0412.1961.2022.00154
  研究论文 本期目录 | 过刊浏览 |
应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响
戚钊1,2, 王斌2, 张鹏2(), 刘睿2, 张振军2, 张哲峰2()
1.郑州大学 河南先进技术研究院 郑州 450001
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects
QI Zhao1,2, WANG Bin2, ZHANG Peng2(), LIU Rui2, ZHANG Zhenjun2, ZHANG Zhefeng2()
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
Zhao QI, Bin WANG, Peng ZHANG, Rui LIU, Zhenjun ZHANG, Zhefeng ZHANG. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. Acta Metall Sin, 2023, 59(10): 1411-1418.

全文: PDF(3119 KB)   HTML
摘要: 

选择含有2种不同微观缺陷的选区激光熔化TC4合金,定性研究了缺陷尺寸对稳态阶段疲劳裂纹扩展速率的影响规律,并对缺陷尺寸较小的合金,在不同应力比(R = 0.1、0.3和0.5)下进行稳态阶段疲劳裂纹扩展速率对比研究。在疲劳裂纹扩展速率(da / dN,其中,a为裂纹长度,N为应力循环周次)和应力强度因子范围(ΔK)关系的基础上,利用Paris公式拟合分析,结果表明,缺陷尺寸增大导致da / dN增大,即Paris公式中的系数m不变,C增大;而随着R增大,ΔK减小,da / dN增大,同时da / dN曲线在低ΔK时汇集,即Paris公式中的系数m增大,C减小,且m和lgC之间存在线性关系,该关系不受R的影响。最终结合疲劳损伤机制,对微观缺陷和R引起的不同变化规律进行了分析。

关键词 选区激光熔化TC4合金缺陷应力比疲劳裂纹扩展速率Paris公式    
Abstract

TC4 alloy components with complicated geometries can be directly fabricated using selective laser melting (SLM) at a low cost. These components are often used under complex service conditions. Thus, it is important to investigate the effects of the stress ratio (R) on the fatigue crack growth (FCG) rate (da / dN) in SLM TC4 alloys with defects at the steady state to develop guidelines for damage-tolerance design and fatigue life assessment. In this work, SLM TC4 alloys containing two different microdefects were used to qualitatively examine the effect of the defect size on the da / dN at the steady state. In addition, comparative studies using an alloy with smaller defect sizes were performed at the steady state and at R = 0.1, 0.3, and 0.5. The relationship between the da / dN and stress intensity factor range(ΔK)was plotted and analyzed by fitting the Paris formula. The results show that the Paris formula parameter, m, is constant and the parameter, C, increases, which means that the increase in the defect size increases the da / dN. The da / dN increases with an increase in R, and the da / dN curves converge at low ΔK, which are reflected in the increase in the parameter, m, and the decrease in the parameter C. Additionally, there is a linear relationship between m and lgC (the common logarithm of C), which is not affected by R. Finally, the change patterns in the da / dN caused by the microdefects and R were analyzed along with the fatigue damage mechanisms.

Key wordsselective laser melting    TC4 alloy    defect    stress ratio    fatigue crack growth rate    Paris formula
收稿日期: 2022-04-02     
ZTFLH:  TG146.23  
基金资助:国家自然科学基金项目(52130002);国家自然科学基金项目(52321001);中国科学院青年创新促进会项目(2018226);中国科学院青年创新促进会项目(2021192);中国科学院金属研究所创新基金项目(2021-PY05);中国科学院金属研究所创新基金项目(2022-PY06)
通讯作者: 张 鹏,pengzhang@imr.ac.cn,主要从事金属材料疲劳性能预测与优化研究;
张哲峰,zhfzhang@imr.ac.cn,主要从事金属材料疲劳与断裂研究
Corresponding author: ZHANG Peng, professor, Tel: (024)83978870, E-mail: pengzhang@imr.ac.cn;
ZHANG Zhefeng, professor, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn
作者简介: 戚 钊,男,1994年生,硕士生
图1  标准紧凑拉伸(CT)试样尺寸示意图
图2  2种选区激光熔化(SLM) TC4合金的OM像
Specimenσb / MPaσs / MPaδ / %
SD1212 ± 51105 ± 28.5 ± 0.1
LD1270 ± 11152 ± 79.6 ± 0.1
表1  SLM TC4合金的拉伸性能
图3  SD (激光功率300 W、扫描速率1200 mm/s)和LD (激光功率250 W、扫描速率1400 mm/s)试样在应力比R = 0.1时的疲劳裂纹扩展速率(da / dN)-应力强度因子范围(ΔK)关系
图4  SD试样在不同R下的da / dN-ΔK关系
图5  疲劳裂纹扩展速率的拟合结果
图6  不同R下Paris公式中材料常数C和m的关系
图7  SD和LD试样在R = 0.1和ΔK = 16 MPa·m1/2条件下疲劳断口的SEM像
图8  SD试样在R = 0.1、0.3和0.5时,ΔK = 10和15 MPa·m1/2处疲劳断口的SEM像
图9  2种疲劳裂纹扩展机制示意图
图10  缺陷对裂纹尖端的影响示意图
1 Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
doi: 10.1016/j.matdes.2010.09.011
2 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today: Proc., 2022, 54: 537
3 Ke L D, Yin J, Zhu H H, et al. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting [J]. Acta Metall. Sin., 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
3 柯林达, 殷 杰, 朱海红, 等. 钛合金薄壁件选区激光熔化应力演变的数值模拟 [J]. 金属学报, 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
4 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
5 Zhang F Y, Tan H, Chen J, et al. Influence of mixing enthalpy on the microstructure of laser multilayer deposited Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
5 张凤英, 谭 华, 陈 静 等. 混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响 [J]. 金属学报, 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
6 Meng L X, Yang H J, Ben D D, et al. Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone [J]. Mater. Sci. Eng., 2022, A830: 142294
7 Liu Z Q, Xu G J, Wang W, et al. Effect of laser 3D printing process on quality of titanium alloy [J]. J. Shenyang Univ. Technol., 2020, 42: 57
7 刘占起, 徐国建, 王 蔚 等. 激光3D打印工艺对钛合金质量的影响 [J]. 沈阳工业大学学报, 2020, 42: 57
doi: 10.7688/j.issn.1000-1646.2020.01.11
8 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
9 Yan X C, Yin S, Chen C Y, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting [J]. J. Alloys Compd., 2018, 764: 1056
doi: 10.1016/j.jallcom.2018.06.076
10 Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
doi: 10.1016/j.jallcom.2012.07.022
11 Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
12 Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
12 吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
13 Hui L, Wang N, Zhou S, et al. Selective laser melting of TC4 titanium alloy fatigue and fracture [J]. Sci. Technol. Eng., 2020, 20: 5844
13 回 丽, 王 宁, 周 松 等. 激光选区熔化TC4钛合金疲劳与断裂 [J]. 科学技术与工程, 2020, 20: 5844
14 Cain V, Thijs L, Van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting [J]. Addit. Manuf., 2015, 5: 68
15 Rans C, Michielssen J, Walker M, et al. Beyond the orthogonal: On the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 344
doi: 10.1016/j.ijfatigue.2018.06.038
16 Tarik Hasib M, Ostergaard H E, Li X P, et al. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation [J]. Int. J. Fatigue, 2021, 142: 105955
doi: 10.1016/j.ijfatigue.2020.105955
17 Zhang H Y, Dong D K, Su S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V [J]. Chin. J. Aeronaut., 2019, 32: 2383
doi: 10.1016/j.cja.2018.12.007
18 Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy [J]. Acta Mater., 2019, 169: 45
doi: 10.1016/j.actamat.2019.03.003
19 Qi Z, Wang B, Zhang P, et al. Different effects of multiscale microstructure on fatigue crack growth path and rate in selective laser melted Ti6Al4V [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 2457
doi: 10.1111/ffe.v45.9
20 Dubey S, Soboyejo A B O, Soboyejo W O. An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V [J]. Acta Mater., 1997, 45: 2777
doi: 10.1016/S1359-6454(96)00380-1
21 Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
doi: 10.1016/S0167-6636(03)00037-1
22 Paris P, Erdogan F. A critical analysis of crack propagation laws [J]. J. Basic Eng., 1963, 85: 528
doi: 10.1115/1.3656900
23 Xu F, Zhou S L, Shi K X. Effects of stress ratio on fatigue crack growth rate of TC4-DT alloy [J]. Hot Work. Technol., 2010, 39: 33
23 许 飞, 周善林, 石科学. 应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2010, 39: 33
24 Zhang Y J, Zhang X Y, Zhang Y H. Pertinence of material constants in paris model for fatigue crack propagation rate of metallic materials [J]. Dev. Appl. Mater., 2021, 36: 1
24 张亚军, 张欣耀, 张云浩. 金属材料疲劳裂纹扩展速率Paris模型中材料常数的相关性 [J]. 材料开发与应用, 2021, 36: 1
25 Chowdhury P, Sehitoglu H. Mechanisms of fatigue crack growth—A critical digest of theoretical developments [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 652
doi: 10.1111/ffe.v39.6
26 Zhang L, Liu Y Y, Xue X H, et al. Crack growth rate of TC18 alloy with different microstructure [J]. Chin. J. Rare Met., 2018, 42: 594
26 张 乐, 刘莹莹, 薛希豪 等. 显微组织对TC18合金裂纹扩展速率的影响 [J]. 稀有金属, 2018, 42: 594
27 Susmel L, Tovo R, Lazzarin P. The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view [J]. Int. J. Fatigue, 2005, 27: 928
doi: 10.1016/j.ijfatigue.2004.11.012
[1] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[4] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[5] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[6] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[7] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[8] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[9] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[10] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[11] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[12] 林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
[13] 张金钰, 屈启蒙, 王亚强, 吴凯, 刘刚, 孙军. 金属/高熵合金纳米多层膜的力学性能及其辐照效应研究进展[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] 陈伟, 章环, 牟娟, 朱正旺, 张海峰, 王沿东. 显微组织和应变速率对TC4合金动态力学性能和绝热剪切带的影响[J]. 金属学报, 2022, 58(10): 1271-1280.
[15] 王凯冬, 刘允中, 詹强坤, 黄斌. 形核剂的添加方式对选区激光熔化成形含锆Al-Cu-Mg合金显微组织与力学性能的影响[J]. 金属学报, 2022, 58(10): 1281-1291.