|
|
应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响 |
戚钊1,2, 王斌2, 张鹏2( ), 刘睿2, 张振军2, 张哲峰2( ) |
1.郑州大学 河南先进技术研究院 郑州 450001 2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects |
QI Zhao1,2, WANG Bin2, ZHANG Peng2( ), LIU Rui2, ZHANG Zhenjun2, ZHANG Zhefeng2( ) |
1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
Zhao QI,
Bin WANG,
Peng ZHANG,
Rui LIU,
Zhenjun ZHANG,
Zhefeng ZHANG.
Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. Acta Metall Sin, 2023, 59(10): 1411-1418.
1 |
Cui C X, Hu B M, Zhao L C, et al. Titanium alloy production technology, market prospects and industry development [J]. Mater. Des., 2011, 32: 1684
doi: 10.1016/j.matdes.2010.09.011
|
2 |
Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today: Proc., 2022, 54: 537
|
3 |
Ke L D, Yin J, Zhu H H, et al. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting [J]. Acta Metall. Sin., 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
|
3 |
柯林达, 殷 杰, 朱海红, 等. 钛合金薄壁件选区激光熔化应力演变的数值模拟 [J]. 金属学报, 2020, 56: 374
doi: 10.11900/0412.1961.2019.00198
|
4 |
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
5 |
Zhang F Y, Tan H, Chen J, et al. Influence of mixing enthalpy on the microstructure of laser multilayer deposited Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
|
5 |
张凤英, 谭 华, 陈 静 等. 混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响 [J]. 金属学报, 2012, 48: 159
doi: 10.3724/SP.J.1037.2011.00351
|
6 |
Meng L X, Yang H J, Ben D D, et al. Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone [J]. Mater. Sci. Eng., 2022, A830: 142294
|
7 |
Liu Z Q, Xu G J, Wang W, et al. Effect of laser 3D printing process on quality of titanium alloy [J]. J. Shenyang Univ. Technol., 2020, 42: 57
|
7 |
刘占起, 徐国建, 王 蔚 等. 激光3D打印工艺对钛合金质量的影响 [J]. 沈阳工业大学学报, 2020, 42: 57
doi: 10.7688/j.issn.1000-1646.2020.01.11
|
8 |
Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
|
9 |
Yan X C, Yin S, Chen C Y, et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting [J]. J. Alloys Compd., 2018, 764: 1056
doi: 10.1016/j.jallcom.2018.06.076
|
10 |
Vrancken B, Thijs L, Kruth J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties [J]. J. Alloys Compd., 2012, 541: 177
doi: 10.1016/j.jallcom.2012.07.022
|
11 |
Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review [J]. Prog. Mater Sci., 2021, 117: 100724
doi: 10.1016/j.pmatsci.2020.100724
|
12 |
Wu Z K, Wu S C, Zhang J, et al. Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography [J]. Acta Metall. Sin., 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
|
12 |
吴正凯, 吴圣川, 张 杰 等. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 [J]. 金属学报, 2019, 55: 811
doi: 10.11900/0412.1961.2018.00408
|
13 |
Hui L, Wang N, Zhou S, et al. Selective laser melting of TC4 titanium alloy fatigue and fracture [J]. Sci. Technol. Eng., 2020, 20: 5844
|
13 |
回 丽, 王 宁, 周 松 等. 激光选区熔化TC4钛合金疲劳与断裂 [J]. 科学技术与工程, 2020, 20: 5844
|
14 |
Cain V, Thijs L, Van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting [J]. Addit. Manuf., 2015, 5: 68
|
15 |
Rans C, Michielssen J, Walker M, et al. Beyond the orthogonal: On the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V [J]. Int. J. Fatigue, 2018, 116: 344
doi: 10.1016/j.ijfatigue.2018.06.038
|
16 |
Tarik Hasib M, Ostergaard H E, Li X P, et al. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation [J]. Int. J. Fatigue, 2021, 142: 105955
doi: 10.1016/j.ijfatigue.2020.105955
|
17 |
Zhang H Y, Dong D K, Su S P, et al. Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V [J]. Chin. J. Aeronaut., 2019, 32: 2383
doi: 10.1016/j.cja.2018.12.007
|
18 |
Kumar P, Ramamurty U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy [J]. Acta Mater., 2019, 169: 45
doi: 10.1016/j.actamat.2019.03.003
|
19 |
Qi Z, Wang B, Zhang P, et al. Different effects of multiscale microstructure on fatigue crack growth path and rate in selective laser melted Ti6Al4V [J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 2457
doi: 10.1111/ffe.v45.9
|
20 |
Dubey S, Soboyejo A B O, Soboyejo W O. An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V [J]. Acta Mater., 1997, 45: 2777
doi: 10.1016/S1359-6454(96)00380-1
|
21 |
Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures [J]. Mech. Mater., 2004, 36: 161
doi: 10.1016/S0167-6636(03)00037-1
|
22 |
Paris P, Erdogan F. A critical analysis of crack propagation laws [J]. J. Basic Eng., 1963, 85: 528
doi: 10.1115/1.3656900
|
23 |
Xu F, Zhou S L, Shi K X. Effects of stress ratio on fatigue crack growth rate of TC4-DT alloy [J]. Hot Work. Technol., 2010, 39: 33
|
23 |
许 飞, 周善林, 石科学. 应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2010, 39: 33
|
24 |
Zhang Y J, Zhang X Y, Zhang Y H. Pertinence of material constants in paris model for fatigue crack propagation rate of metallic materials [J]. Dev. Appl. Mater., 2021, 36: 1
|
24 |
张亚军, 张欣耀, 张云浩. 金属材料疲劳裂纹扩展速率Paris模型中材料常数的相关性 [J]. 材料开发与应用, 2021, 36: 1
|
25 |
Chowdhury P, Sehitoglu H. Mechanisms of fatigue crack growth—A critical digest of theoretical developments [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 652
doi: 10.1111/ffe.v39.6
|
26 |
Zhang L, Liu Y Y, Xue X H, et al. Crack growth rate of TC18 alloy with different microstructure [J]. Chin. J. Rare Met., 2018, 42: 594
|
26 |
张 乐, 刘莹莹, 薛希豪 等. 显微组织对TC18合金裂纹扩展速率的影响 [J]. 稀有金属, 2018, 42: 594
|
27 |
Susmel L, Tovo R, Lazzarin P. The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view [J]. Int. J. Fatigue, 2005, 27: 928
doi: 10.1016/j.ijfatigue.2004.11.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|