|
|
选区激光熔化高强韧铝合金的异质结构调控及力学性能 |
林研1, 司丞1, 徐京豫1, 刘泽2, 张诚1( ), 柳林1 |
1.华中科技大学 材料科学与工程学院 材料成型与模具技术国家重点实验室 武汉 430074 2.武汉大学 土木建筑工程学院 工程力学系 武汉 430072 |
|
Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting |
LIN Yan1, SI Cheng1, XU Jingyu1, LIU Ze2, ZHANG Cheng1( ), LIU Lin1 |
1.State Key Lab for Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China |
引用本文:
林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
Yan LIN,
Cheng SI,
Jingyu XU,
Ze LIU,
Cheng ZHANG,
Lin LIU.
Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(11): 1509-1518.
1 |
Wong K V, Hernandez A. A review of additive manufacturing [J]. Int. Schol. Res. Not., 2012, 2012: 208760
|
2 |
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
|
3 |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
4 |
Lewandowski J J, Seifi M. Metal additive manufacturing: A review of mechanical properties [J]. Annu. Rev. Mater. Res., 2016, 46: 151
doi: 10.1146/annurev-matsci-070115-032024
|
5 |
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
6 |
Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing [J]. Nat. Commun., 2018, 9: 3426
doi: 10.1038/s41467-018-05819-9
pmid: 30143641
|
7 |
Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting [J]. NPG Asia Mater., 2018, 10: 127
doi: 10.1038/s41427-018-0018-5
|
8 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
9 |
Mishra R S, Thapliyal S. Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing [J]. Mater. Des., 2021, 204: 109640
doi: 10.1016/j.matdes.2021.109640
|
10 |
Rometsch P, Jia Q B, Yang K V, et al. Aluminum alloys for selective laser melting—Towards improved performance [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 301
|
11 |
Todd I. No more tears for metal 3D printing [J]. Nature, 2017, 549: 342
doi: 10.1038/549342a
|
12 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
13 |
Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting [J]. Acta Mater., 2017, 126: 25
doi: 10.1016/j.actamat.2016.12.044
|
14 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
15 |
Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, A701: 264
|
16 |
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
|
17 |
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
|
18 |
Pham M S, Dovgyy B, Hooper P A, et al. The role of side-branching in microstructure development in laser powder-bed fusion [J]. Nat. Commun., 2020, 11: 749
doi: 10.1038/s41467-020-14453-3
|
19 |
Zhu Z G, Ng F L, Seet H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation [J]. Mater. Today, 2022, 52: 90
doi: 10.1016/j.mattod.2021.11.019
|
20 |
Liu Y G, Zhang J Q, Tan Q Y, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion [J]. Acta Mater., 2021, 220: 117311
doi: 10.1016/j.actamat.2021.117311
|
21 |
Li Y, Chen K, Narayan R L, et al. Multi-scale microstructural investigation of a laser 3D printed Ni-based superalloy [J]. Addit. Manuf., 2020, 34: 101220
|
22 |
Liu L X, Pan J, Zhang C, et al. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault [J]. Mater. Sci. Eng., 2022, A843: 143106
|
23 |
Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
|
24 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
25 |
Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
|
26 |
Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
|
27 |
Thapliyal S, Shukla S, Zhou L, et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing [J]. Addit. Manuf., 2021, 42: 102002
|
28 |
Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks [M]. Hellertown: Dell Research Corporation, 1973: 34
|
29 |
Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
|
30 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
|
31 |
Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mater. Sci. Eng., 2017, A689: 220
|
32 |
Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion [J]. Acta Mater., 2021, 203: 116476
doi: 10.1016/j.actamat.2020.11.018
|
33 |
Wang H, Zhu Z G, Chen H S, et al. Effect of cyclic thermal loadings on the microstructural evolution of a cantor alloy in 3D printing processes [J]. Microsc. Microanal., 2019, 25: 2568
doi: 10.1017/S1431927619013576
|
34 |
Kou S. Welding Metallurgy [M]. 2nd Ed., Hoboken, New Jersey: John Wiley& Sons, Inc., 2003: 17
|
35 |
Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloys Compd., 2017, 707: 27
doi: 10.1016/j.jallcom.2016.12.209
|
36 |
Birnbaum A J, Steuben J C, Barrick E J, et al. Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L [J]. Addit. Manuf., 2019, 29: 100784
|
37 |
Bertsch K M, De Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
|
38 |
Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
|
39 |
Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
|
40 |
Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
|
41 |
Wu Y Y, Zhang T M, Chen C, et al. Microstructure and mechanical property evolution of additive manufactured eutectic Al-2Fe alloy during solidification and aging [J]. J. Alloys Compd., 2022, 897: 163243
doi: 10.1016/j.jallcom.2021.163243
|
42 |
Thangaraju S, Heilmaier M, Murty B S, et al. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys [J]. Adv. Eng. Mater., 2012, 14: 892
doi: 10.1002/adem.201200114
|
43 |
Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
|
44 |
Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals [J]. Acta Mater., 1998, 46: 1827
doi: 10.1016/S1359-6454(97)00365-0
|
45 |
Hong Y J, Zhou C S, Zheng Y Y, et al. The cellular boundary with high density of dislocations governed the strengthening mechanism in selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, A799: 140279
|
46 |
Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy [J]. Scr. Mater., 2017, 141: 45
doi: 10.1016/j.scriptamat.2017.07.025
|
47 |
Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2018, A711: 562
|
48 |
Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
doi: 10.1016/j.matdes.2020.109339
|
49 |
Hu Z H, Qi Y, Nie X J, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting [J]. Mater. Charact., 2021, 178: 111198
doi: 10.1016/j.matchar.2021.111198
|
50 |
Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
doi: 10.1016/j.ijplas.2021.102972
|
51 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
52 |
Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
|
53 |
Cotterell B, Rice J R. Slightly curved or kinked cracks [J]. Int. J. Fract., 1980, 16: 155
doi: 10.1007/BF00012619
|
54 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
55 |
Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
|
56 |
Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115
pmid: 22020005
|
57 |
Lin Y, Yu Q, Pan J, et al. On the impact toughness of gradient-structured metals [J]. Acta Mater., 2020, 193: 125
doi: 10.1016/j.actamat.2020.04.027
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|