Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1509-1518    DOI: 10.11900/0412.1961.2022.00314
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化高强韧铝合金的异质结构调控及力学性能
林研1, 司丞1, 徐京豫1, 刘泽2, 张诚1(), 柳林1
1.华中科技大学 材料科学与工程学院 材料成型与模具技术国家重点实验室 武汉 430074
2.武汉大学 土木建筑工程学院 工程力学系 武汉 430072
Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting
LIN Yan1, SI Cheng1, XU Jingyu1, LIU Ze2, ZHANG Cheng1(), LIU Lin1
1.State Key Lab for Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
引用本文:

林研, 司丞, 徐京豫, 刘泽, 张诚, 柳林. 选区激光熔化高强韧铝合金的异质结构调控及力学性能[J]. 金属学报, 2022, 58(11): 1509-1518.
Yan LIN, Cheng SI, Jingyu XU, Ze LIU, Cheng ZHANG, Lin LIU. Heterogeneous Structure and Mechanical Properties of Strong and Tough Al Alloys Prepared by Selective Laser Melting[J]. Acta Metall Sin, 2022, 58(11): 1509-1518.

全文: PDF(2510 KB)   HTML
摘要: 

同时采用共晶成分设计和晶粒细化的策略,通过异质结构调控提升SLM成形的Al-Fe系列合金的强韧性。结果表明,SLM成形AlFe5合金呈现柱状粗晶和等轴细晶并存的组织结构,其中细晶的体积分数较低,整体显微结构未表现出明显的非均匀性;随着Zr元素的添加,SLM成形AlFe5Zr1合金中细晶体积分数增加,呈现粗、细晶交替分布的非均匀异质结构。同时,SLM成形AlFe5和AlFe5Zr1合金在纳米尺度均呈现胞状结构特征。这种纳米级胞状结构、过饱和Fe元素及高位错密度主导的强化机制使得SLM成形Al-Fe-Zr系列合金的屈服强度达400 MPa,且异质结构可进一步提升AlFe5Zr1合金的应变强化能力,使其抗拉强度达450 MPa。原位断裂韧性测试结果表明,异质结构可促使裂纹在扩展过程中发生偏折和尖端钝化,从而增加裂纹扩展阻力,使AlFe5Zr1合金具有优异的断裂韧性。

关键词 Al-Fe-Zr合金选区激光熔化(SLM)异质结构力学性能    
Abstract

Aluminum alloys have been widely used in fields such as automotive and aerospace industries, owing to their excellent mechanical properties, lightweight, and low recycling costs. However, aluminum alloys processed by selective laser melting (SLM) typically suffer from insufficient strength and fracture toughness. To tackle this issue, a new strategy that integrates eutectic composition design and grain refinement has been adopted to create a heterogeneous structure that can improve strength and toughness of SLMed Al-Fe-Zr alloys. The SLMed AlFe5 alloy consists of high-volume-fraction of coarse and columnar grains and low-volume-fraction of fine grains, and no obvious heterogeneity is visible across the microstructure length scale. With the addition of Zr, the volume fraction of fine grains significantly increases, leading to the heterogeneous distribution of coarse and fine grains in the SLMed AlFe5Zr1 alloy. Meanwhile, both AlFe5 and AlFe5Zr1 alloys show a nanoscale cellular structure. This type of a nanosized cellular structure, together with supersaturated Fe and high-density dislocations, contributes to a high yield strength of 400 MPa for the SLMed AlFeZr alloys. The heterogeneous structure can further improve the strain strengthening capability, enabling a tensile strength as high as 450 MPa for the AlFe5Zr1 alloy. Furthermore, the heterogeneous structure promotes crack deflection and crack tip blunting, which can effectively increase crack growth resistance and impart superior fracture toughness to the AlFe5Zr1 alloy.

Key wordsAl-Fe-Zr alloy    selective laser melting (SLM)    heterogeneous structure    mechanical property
收稿日期: 2022-06-23     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(52061160483);国家自然科学基金项目(92166130);国家自然科学基金项目(52001075);中国博士后科学基金项目(2021M701290)
作者简介: 林 研,男,1990年生,博士
图1  平板拉伸试样和单边缺口拉伸试样的几何形状示意图
图2  不同工艺参数下选区激光熔化(SLM)成形AlFe5Zr1合金的相对密度及最佳工艺下AlFe5Zr1合金的三维X射线CT图像
图3  SLM成形AlFe5和AlFe5Zr1合金的EBSD图、极图和晶粒尺寸分布图
图4  SLM成形AlFe5和AlFe5Zr1合金的胞状结构形貌及胞状结构内的元素分布
图5  SLM成形AlFe5、AlFe5Zr1及AlSi10Mg合金的室温准静态拉伸工程应力-应变曲线
Alloyσy / MPaσuts / MPaElongation / %
AlFe5399.0 ± 3.3434.6 ± 11.81.7 ± 0.1
AlFe5Zr1405.8 ± 5.7450.3 ± 4.62.3 ± 0.3
AlSi10Mg268.7 ± 3.4378.0 ± 6.83.1 ± 0.1
表1  SLM成形AlFe5、AlFe5Zr1和AlSi10Mg合金的拉伸性能
图6  SLM成形AlFe5、AlFe5Zr1及AlSi10Mg合金试样的载荷-位移曲线
图7  SLM成形AlFe5Zr1合金试样拉伸变形后的TEM明场像
图8  SLM成形AlFe5Zr1和AlFe5合金的裂纹扩展形貌
1 Wong K V, Hernandez A. A review of additive manufacturing [J]. Int. Schol. Res. Not., 2012, 2012: 208760
2 Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. Eng. Perform., 2014, 23: 1917
doi: 10.1007/s11665-014-0958-z
3 Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
4 Lewandowski J J, Seifi M. Metal additive manufacturing: A review of mechanical properties [J]. Annu. Rev. Mater. Res., 2016, 46: 151
doi: 10.1146/annurev-matsci-070115-032024
5 Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
6 Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing [J]. Nat. Commun., 2018, 9: 3426
doi: 10.1038/s41467-018-05819-9 pmid: 30143641
7 Sun Z J, Tan X P, Tor S B, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting [J]. NPG Asia Mater., 2018, 10: 127
doi: 10.1038/s41427-018-0018-5
8 Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
9 Mishra R S, Thapliyal S. Design approaches for printability-performance synergy in Al alloys for laser-powder bed additive manufacturing [J]. Mater. Des., 2021, 204: 109640
doi: 10.1016/j.matdes.2021.109640
10 Rometsch P, Jia Q B, Yang K V, et al. Aluminum alloys for selective laser melting—Towards improved performance [A]. Additive Manufacturing for the Aerospace Industry [M]. Amsterdam: Elsevier, 2019: 301
11 Todd I. No more tears for metal 3D printing [J]. Nature, 2017, 549: 342
doi: 10.1038/549342a
12 Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
13 Prashanth K G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting [J]. Acta Mater., 2017, 126: 25
doi: 10.1016/j.actamat.2016.12.044
14 Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
15 Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc-and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, A701: 264
16 Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength AlMnSc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
17 Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
18 Pham M S, Dovgyy B, Hooper P A, et al. The role of side-branching in microstructure development in laser powder-bed fusion [J]. Nat. Commun., 2020, 11: 749
doi: 10.1038/s41467-020-14453-3
19 Zhu Z G, Ng F L, Seet H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation [J]. Mater. Today, 2022, 52: 90
doi: 10.1016/j.mattod.2021.11.019
20 Liu Y G, Zhang J Q, Tan Q Y, et al. Additive manufacturing of high strength copper alloy with heterogeneous grain structure through laser powder bed fusion [J]. Acta Mater., 2021, 220: 117311
doi: 10.1016/j.actamat.2021.117311
21 Li Y, Chen K, Narayan R L, et al. Multi-scale microstructural investigation of a laser 3D printed Ni-based superalloy [J]. Addit. Manuf., 2020, 34: 101220
22 Liu L X, Pan J, Zhang C, et al. Achieving high strength and ductility in a 3D-printed high entropy alloy by cooperative planar slipping and stacking fault [J]. Mater. Sci. Eng., 2022, A843: 143106
23 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
24 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
25 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
26 Lin Y, Pan J, Zhou H F, et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel [J]. Acta Mater., 2018, 153: 279
doi: 10.1016/j.actamat.2018.04.065
27 Thapliyal S, Shukla S, Zhou L, et al. Design of heterogeneous structured Al alloys with wide processing window for laser-powder bed fusion additive manufacturing [J]. Addit. Manuf., 2021, 42: 102002
28 Tada H, Paris P C, Irwin G R. The Stress Analysis of Cracks [M]. Hellertown: Dell Research Corporation, 1973: 34
29 Roth C C, Tancogne-Dejean T, Mohr D. Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling [J]. Addit. Manuf., 2021, 43: 101998
30 Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
31 Tucho W M, Cuvillier P, Sjolyst-Kverneland A, et al. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment [J]. Mater. Sci. Eng., 2017, A689: 220
32 Voisin T, Forien J B, Perron A, et al. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion [J]. Acta Mater., 2021, 203: 116476
doi: 10.1016/j.actamat.2020.11.018
33 Wang H, Zhu Z G, Chen H S, et al. Effect of cyclic thermal loadings on the microstructural evolution of a cantor alloy in 3D printing processes [J]. Microsc. Microanal., 2019, 25: 2568
doi: 10.1017/S1431927619013576
34 Kou S. Welding Metallurgy [M]. 2nd Ed., Hoboken, New Jersey: John Wiley& Sons, Inc., 2003: 17
35 Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys [J]. J. Alloys Compd., 2017, 707: 27
doi: 10.1016/j.jallcom.2016.12.209
36 Birnbaum A J, Steuben J C, Barrick E J, et al. Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L [J]. Addit. Manuf., 2019, 29: 100784
37 Bertsch K M, De Bellefon G M, Kuehl B, et al. Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L [J]. Acta Mater., 2020, 199: 19
doi: 10.1016/j.actamat.2020.07.063
38 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
39 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
40 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
41 Wu Y Y, Zhang T M, Chen C, et al. Microstructure and mechanical property evolution of additive manufactured eutectic Al-2Fe alloy during solidification and aging [J]. J. Alloys Compd., 2022, 897: 163243
doi: 10.1016/j.jallcom.2021.163243
42 Thangaraju S, Heilmaier M, Murty B S, et al. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys [J]. Adv. Eng. Mater., 2012, 14: 892
doi: 10.1002/adem.201200114
43 Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J]. Acta Mater., 1998, 46: 3087
doi: 10.1016/S1359-6454(98)00014-7
44 Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals [J]. Acta Mater., 1998, 46: 1827
doi: 10.1016/S1359-6454(97)00365-0
45 Hong Y J, Zhou C S, Zheng Y Y, et al. The cellular boundary with high density of dislocations governed the strengthening mechanism in selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2021, A799: 140279
46 Chen B, Moon S K, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy [J]. Scr. Mater., 2017, 141: 45
doi: 10.1016/j.scriptamat.2017.07.025
47 Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2018, A711: 562
48 Zhang X X, Andrä H, Harjo S, et al. Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation [J]. Mater. Des., 2021, 198: 109339
doi: 10.1016/j.matdes.2020.109339
49 Hu Z H, Qi Y, Nie X J, et al. The Portevin-Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting [J]. Mater. Charact., 2021, 178: 111198
doi: 10.1016/j.matchar.2021.111198
50 Zhang X X, Knoop D, Andrä H, et al. Multiscale constitutive modeling of additively manufactured Al-Si-Mg alloys based on measured phase stresses and dislocation density [J]. Int. J. Plast., 2021, 140: 102972
doi: 10.1016/j.ijplas.2021.102972
51 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
52 Li J J, Lu W J, Chen S H, et al. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures [J]. Int. J. Plast., 2020, 126: 102626
doi: 10.1016/j.ijplas.2019.11.005
53 Cotterell B, Rice J R. Slightly curved or kinked cracks [J]. Int. J. Fract., 1980, 16: 155
doi: 10.1007/BF00012619
54 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
55 Launey M E, Ritchie R O. On the fracture toughness of advanced materials [J]. Adv. Mater., 2009, 21: 2103
doi: 10.1002/adma.200803322
56 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
57 Lin Y, Yu Q, Pan J, et al. On the impact toughness of gradient-structured metals [J]. Acta Mater., 2020, 193: 125
doi: 10.1016/j.actamat.2020.04.027
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.