金属学报, 2023, 59(10): 1411-1418 DOI: 10.11900/0412.1961.2022.00154

研究论文

应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响

戚钊1,2, 王斌2, 张鹏,2, 刘睿2, 张振军2, 张哲峰,2

1.郑州大学 河南先进技术研究院 郑州 450001

2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016

Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects

QI Zhao1,2, WANG Bin2, ZHANG Peng,2, LIU Rui2, ZHANG Zhenjun2, ZHANG Zhefeng,2

1.Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China

2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 张 鹏,pengzhang@imr.ac.cn,主要从事金属材料疲劳性能预测与优化研究;张哲峰,zhfzhang@imr.ac.cn,主要从事金属材料疲劳与断裂研究

收稿日期: 2022-04-02   修回日期: 2022-07-29  

基金资助: 国家自然科学基金项目(52130002)
国家自然科学基金项目(52321001)
中国科学院青年创新促进会项目(2018226)
中国科学院青年创新促进会项目(2021192)
中国科学院金属研究所创新基金项目(2021-PY05)
中国科学院金属研究所创新基金项目(2022-PY06)

Corresponding authors: ZHANG Peng, professor, Tel:(024)83978870, E-mail:pengzhang@imr.ac.cn;ZHANG Zhefeng, professor, Tel:(024)23971043, E-mail:zhfzhang@imr.ac.cn

Received: 2022-04-02   Revised: 2022-07-29  

Fund supported: National Natural Science Foundation of China(52130002)
National Natural Science Foundation of China(52321001)
Youth Innovation Promotion Association of Chinese Academy of Sciences(2018226)
Youth Innovation Promotion Association of Chinese Academy of Sciences(2021192)
Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2021-PY05)
Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2022-PY06)

作者简介 About authors

戚 钊,男,1994年生,硕士生

摘要

选择含有2种不同微观缺陷的选区激光熔化TC4合金,定性研究了缺陷尺寸对稳态阶段疲劳裂纹扩展速率的影响规律,并对缺陷尺寸较小的合金,在不同应力比(R = 0.1、0.3和0.5)下进行稳态阶段疲劳裂纹扩展速率对比研究。在疲劳裂纹扩展速率(da / dN,其中,a为裂纹长度,N为应力循环周次)和应力强度因子范围(ΔK)关系的基础上,利用Paris公式拟合分析,结果表明,缺陷尺寸增大导致da / dN增大,即Paris公式中的系数m不变,C增大;而随着R增大,ΔK减小,da / dN增大,同时da / dN曲线在低ΔK时汇集,即Paris公式中的系数m增大,C减小,且m和lgC之间存在线性关系,该关系不受R的影响。最终结合疲劳损伤机制,对微观缺陷和R引起的不同变化规律进行了分析。

关键词: 选区激光熔化; TC4合金; 缺陷; 应力比; 疲劳裂纹扩展速率; Paris公式

Abstract

TC4 alloy components with complicated geometries can be directly fabricated using selective laser melting (SLM) at a low cost. These components are often used under complex service conditions. Thus, it is important to investigate the effects of the stress ratio (R) on the fatigue crack growth (FCG) rate (da / dN) in SLM TC4 alloys with defects at the steady state to develop guidelines for damage-tolerance design and fatigue life assessment. In this work, SLM TC4 alloys containing two different microdefects were used to qualitatively examine the effect of the defect size on the da / dN at the steady state. In addition, comparative studies using an alloy with smaller defect sizes were performed at the steady state and at R = 0.1, 0.3, and 0.5. The relationship between the da / dN and stress intensity factor range(ΔK)was plotted and analyzed by fitting the Paris formula. The results show that the Paris formula parameter, m, is constant and the parameter, C, increases, which means that the increase in the defect size increases the da / dN. The da / dN increases with an increase in R, and the da / dN curves converge at low ΔK, which are reflected in the increase in the parameter, m, and the decrease in the parameter C. Additionally, there is a linear relationship between m and lgC (the common logarithm of C), which is not affected by R. Finally, the change patterns in the da / dN caused by the microdefects and R were analyzed along with the fatigue damage mechanisms.

Keywords: selective laser melting; TC4 alloy; defect; stress ratio; fatigue crack growth rate; Paris formula

PDF (3119KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418 DOI:10.11900/0412.1961.2022.00154

QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. Acta Metallurgica Sinica, 2023, 59(10): 1411-1418 DOI:10.11900/0412.1961.2022.00154

TC4作为最早成功开发的钛合金,凭借其较高的比强度、优异的耐蚀性能等特点,在航空航天、生物医疗等领域有着广泛的应用[1,2]。面对愈发严格复杂的技术要求,采用增材制造方法可以实现高难度构件的快速制备,弥补传统加工过程中的不足,降低加工成本[3]。在增材制造技术中,利用激光熔化粉末实现材料逐层凝固堆积的选区激光熔化(SLM)一直备受关注[4]

对于SLM TC4合金,在诸多方面都已经开展相关研究,如打印过程中工艺参数的影响[5~7]、组织与力学性能的调控[8~10]等。但是在SLM过程中难免产生孔隙、未熔合等缺陷[11],其一方面会制约疲劳性能[12,13],另一方面也使得作为航空关键构件重要材料的TC4合金,在应用中更加依赖损伤容限设计方法。疲劳裂纹扩展速率是指导损伤容限设计的重要指标,过去对于SLM TC4合金疲劳裂纹扩展速率的研究,主要集中在打印方向、热处理等方面。

Cain等[14]和Rans等[15]分别对不同的打印方向进行了研究,认为残余应力分布是导致SLM TC4合金中疲劳裂纹扩展速率各向异性的原因。热处理能够消除残余应力,从而消除打印方向对裂纹扩展速率的影响[16]。此外,热处理虽无法消除SLM过程中的冶金缺陷,但可以大幅提高断裂韧性,降低疲劳裂纹扩展速率[17];同时能够调整成形后TC4合金的组织类型,使裂纹扩展呈现出曲折的路径[18,19]。这些研究内容及数据可以更好地改善或促进增材制造构件的应用,但采用的应力比(R)固定,且少有对内部微观缺陷影响的讨论。

因此,本工作通过改变打印参数,制备了2种具有不同缺陷尺寸的SLM TC4合金,以定性探讨缺陷对于稳态阶段疲劳裂纹扩展的影响。同时,针对构件在实际服役过程中的载荷复杂多变,对SLM TC4合金进行了不同应力比(R = 0.1、0.3、0.5)的稳态阶段疲劳裂纹扩展速率研究,进行相关数据积累,以期为SLM TC4合金在航空航天等领域关键部位的广泛使用奠定基础。

1 实验方法

实验所用TC4粉末粒径为15~45 μm,其化学成分(质量分数,%)为:Al 6.22,V 4.21,Fe 0.032,C 0.01,N 0.0038,H 0.0095,O 0.10,Ti 余量,元素含量在标准范围内。利用BLT-S320型SLM设备打印TC4合金,使用不同的激光功率(P)和扫描速率(v)制备2种样品:P = 300 W,v = 1200 mm/s,记为SD;P = 250 W,v = 1400 mm/s,记为LD。样品打印完成后进行去应力退火。

利用电火花线切割(EDM)切取金相样品,依次使用400~2000号水磨砂纸研磨,随后使用粒度50 nm的SiO2悬浊液机械抛光至镜面,对未经腐蚀的金相样品采用GX71型光学显微镜(OM)观察缺陷分布。利用EDM切取标距长度25 mm,截面尺寸5 mm × 3 mm的矩形拉伸试样,试样长度方向垂直于打印方向,以1 × 10-3 s-1的应变速率在Instron 5982型试验机上进行室温拉伸实验。

利用EDM在样品上加工缺口,制备疲劳裂纹扩展速率实验所需的标准紧凑拉伸(CT)试样,切取方向和尺寸示意如图1所示。试样切割完成后进行机械抛光,以消除表面粗糙度可能对实验结果造成的影响。依据GB/T 6398—2017《金属材料疲劳试验疲劳裂纹扩展方法》,于室温、大气条件下,在Instron 8801疲劳试验机上预制疲劳裂纹,以消除缺口形状的影响。预制过程使用频率为20 Hz的正弦波,R = 0.1,初始载荷Pmax = 5 kN,随裂纹扩展逐级降载至Pmax = 3.2 kN,预制裂纹的目标长度为3 mm。

图1

图1   标准紧凑拉伸(CT)试样尺寸示意图

Fig.1   Schematic of the geometry of the standard compact tension (CT) specimen (unit: mm)


完成裂纹预制后,采用恒载增K试验程序,保持加载频率10 Hz,分别进行LD (R = 0.1)和SD (R = 0.1、0.3和0.5)样品的疲劳裂纹扩展实验,每组重复3个试样。通过夹式引伸计监测记录实验数据,并利用柔度法和七点递增多项式拟合计算应力强度因子范围(ΔK)与疲劳裂纹扩展速率(da / dN,其中,a为裂纹长度,N为应力循环周次)。疲劳裂纹扩展速率实验结束后,在JSM-6510扫描电子显微镜(SEM)上观察试样断口形貌。

2 实验结果与讨论

2.1 缺陷分布及拉伸性能

图2给出了2种样品在低倍OM下的缺陷分布。SD样品中缺陷在视野中几乎不可见,数量少且尺寸极小(图2a)。由于激光功率的降低和扫描速率的提升减少了能量输入,LD样品中可见许多较大尺寸气孔及未熔合缺陷,其分布随机无规律,平均直径约为18 μm (图2b)。通过电子计算机断层扫描,得到SD样品的致密度达99.7%,LD样品的致密度为98.8%。SD和LD样品的拉伸性能见表1,2者的拉伸性能相近。

图2

图2   2种选区激光熔化(SLM) TC4合金的OM像

Fig.2   OM images of selective laser melting (SLM) TC4 alloy

(a) SD specimen (laser power is 300 W, scanning speed is 1200 mm/s)

(b) LD specimen (laser power is 250 W, scanning speed is 1400 mm/s)


表1   SLM TC4合金的拉伸性能

Table 1  Mechanical properties of SLM TC4 alloy

Specimenσb / MPaσs / MPaδ / %
SD1212 ± 51105 ± 28.5 ± 0.1
LD1270 ± 11152 ± 79.6 ± 0.1

Note:σb—tensile strength, σs—yield strength, δ—elongation

新窗口打开| 下载CSV


2.2 疲劳裂纹扩展速率

由于裂纹扩展第III阶段寿命极短,为了更直观地反映疲劳裂纹在稳态扩展阶段的规律,剔除了扩展速率急剧升高的瞬断区数据。在双对数坐标系中绘制了SD和LD 2种试样在R = 0.1时的da / dNK关系,如图3所示。可见,在相同的R下,SD和LD试样的ΔK大致相当。LD和 SD试样的数据近似平行,且LD数据位于SD数据的上方,即在相同ΔK下含较大尺寸缺陷试样的da / dN更高。经统计,LD和SD试样的平均失效寿命(Nf)分别为297140和362780 cyc,相比含小缺陷的试样,含较大缺陷试样的平均失效寿命降低了18.1%。

图3

图3   SD (激光功率300 W、扫描速率1200 mm/s)和LD (激光功率250 W、扫描速率1400 mm/s)试样在应力比R = 0.1时的疲劳裂纹扩展速率(da / dN)-应力强度因子范围(ΔK)关系

Fig.3   Relationships between da / dN and ΔK of LD and SD specimens at R = 0.1 (R—stress ratio; a—crack length; N—number of cycle; da / dN—fatigue crack growth rate; ΔK—stress intensity factor range; 1, 2, 3—specimen numbers)


同时在双对数坐标系中绘制了SD试样不同R时的da / dNK关系如图4所示。可见,各组试样数据整体重复性较好,在双对数坐标下SLM TC4合金在稳态扩展阶段的da / dN和ΔK整体表现出良好的线性关系。图4中,R与ΔK的范围关系密切,R从0.1增加到0.3和0.5时,ΔK范围分别由8.5~26.9 MPa·m1/2减小至7.9~22.6 MPa·m1/2和7.7~17.3 MPa·m1/2。简言之,随着R的增大,对应的ΔK范围相应减小。这是因为在相同的ΔK下,较大的R对应着更大的最大应力强度因子(Kmax),因此材料会更早进入快速扩展阶段,从而发生断裂。即高R会降低稳态扩展时所需的ΔK,使失稳断裂提前发生。

图4

图4   SD试样在不同R下的da / dNK关系

Fig.4   Relationships between da / dN and ΔK of SD specimens at different R


此外,可以看出da / dNR的影响也较大。在ΔK相同时,da / dN随着R增大而增大,R = 0.5对应的da /dN依次大于R = 0.3和0.1,尤其是在ΔK较大的区域。通常认为[20]R对da / dN的影响主要源于闭合效应:R较低时,裂纹面因压应力引起的闭合时间长,闭合效应明显;随着R增大,裂纹的张开位移变大,闭合效应减弱或消失,裂纹扩展速率加快。显然上述规律实际上是由外因导致的必然结果,不受成形工艺或材料组织类型的影响。同时,选取相同ΔK范围(10~16 MPa·m1/2),经统计,SD试样R = 0.1、0.3和0.5下的平均扩展周次分别为170160、163000和134000 cyc。相较于R = 0.1,R = 0.3和0.5时的扩展寿命分别降低了4.2%和21.3%,符合da / dNR的增加逐渐增加的规律[21]

2.3 稳态扩展阶段的Paris公式

尽管Paris公式只是da / dN和ΔK之间关系的经验公式,但形式简单且适用性强,在工程应用领域被广泛用来描述裂纹的稳态扩展行为,其形式为[22]

da / dN=CΔKm
(1)

式中,Cm是与材料相关的常数。分别对4组实验数据进行并置拟合,求得 式(1)中的系数Cm,从而获得SLM TC4合金在疲劳裂纹稳态扩展阶段的Paris公式如下:

da / dN=2.60×10-8×ΔK2.99 (LD, R=0.1)
(2)
da / dN=2.10×10-8×ΔK2.98 (SD, R=0.1)
(3)
da / dN=7.17×10-9×ΔK3.45 (SD, R=0.3)
(4)
da / dN=2.92×10-9×ΔK3.92(SD, R=0.5)
(5)

对比 式(2)和(3)可以发现,Paris公式中m基本一致,不随缺陷尺寸而变化,LD试样因缺陷尺寸大,C的值大于SD试样。对比式(3)~(5)不难看出,CmR存在一定的相关性,m随着R的增大而增大,但C呈现出减小趋势。这种R导致的变化规律,与传统加工得到的损伤容限型TC4合金变化规律[23]相同。

将所得Paris公式拟合结果绘制在图5的双对数坐标系中,可见,拟合规律与实验数据规律完全相符。由图5a可知,缺陷尺寸增大,拟合直线向上平移,直线保持平行;由图5b可知,R增大,拟合直线斜率增大,截距减小,各拟合直线在低ΔK处近似相交于一点。

图5

图5   疲劳裂纹扩展速率的拟合结果

Fig.5   Fitting results of fatigue crack growth rate at different defect sizes (a) and stress ratios (b)


在上述缺陷尺寸与R对SLM TC4合金da / dN的影响中,大缺陷尺寸的不利影响较为直观。但SLM工艺一直致力于优化缺陷,以提高构件的质量和性能,且期望在材料使用过程中所含的缺陷越小越好,因而重点关注R对含小缺陷的试样的影响。对每个SD试样进行稳态扩展阶段的Paris公式拟合,分别计算mC (以常用对数lgC表示),并作图6,可见2者之间保持很好的线性关系。

图6

图6   不同R下Paris公式中材料常数Cm的关系

Fig.6   Relationship between material constants C and m in different R


线性关系的表达式选取m = algC + b的形式,此处a = -1.033、b = -4.944,拟合系数r2 = 0.9833。从图6可以看到,R的增大使数据点沿着拟合直线发生了移动,并未发生偏离,因此m和lgC的线性关系与R无关。实际上在其他材料,如合金钢、铜合金、铝合金,乃至传统加工钛合金中都存在相似的关系[24]。但R如何具体影响Paris公式中的mC,以及影响m = algC + b线性关系的具体因素,仍需要进一步研究探讨。

2.4 疲劳断口形貌

图7为SD和LD试样在R = 0.1和ΔK = 16 MPa·m1/2处疲劳断口的SEM像。图中并未观察到明显的缺陷痕迹,且2者的断口形貌无明显差异,均呈现出准解理特征。

图7

图7   SD和LD试样在R = 0.1和ΔK = 16 MPa·m1/2条件下疲劳断口的SEM像

Fig.7   SEM images of fractographies of SD (a) and LD (b) specimens at R = 0.1 and ΔK = 16 MPa·m1/2


图8为不同R时SD试样疲劳断口的SEM像(ΔK分别为10和15 MPa·m1/2)。由图可见,在较低的ΔK时不同R试样的断口形貌极为相似,有着许多小解理平面与撕裂棱,呈现出准解理断裂的方式,还存在有大量垂直于扩展面分布的二次裂纹,且二次裂纹有着一定的深度(图8a、c和e)。随着裂纹扩展到高ΔK区,不同R的断口形貌之间产生了差异(图8b、d和f)。在R = 0.1时的断口仍保持着与低ΔK区相似的特征,但在更大应力比(0.3和0.5)下裂纹扩展的延性特征开始增多,撕裂棱的棱角逐渐圆滑,类似韧窝的结构明显增加,裂纹扩展过程发生了由准解理断裂向延性断裂的转变。同时二次裂纹的数量减少,至R = 0.5时二次裂纹不可见。

图8

图8   SD试样在R = 0.1、0.3和0.5时,ΔK = 10和15 MPa·m1/2处疲劳断口的SEM像

Fig.8   SEM images of fractographies of SD specimens at ΔK = 10 MPa·m1/2 (a, c, e) and 15 MPa·m1/2 (b, d, f) with R = 0.1 (a, b), 0.3 (c, d), and 0.5 (e, f)


2.5 疲劳裂纹扩展机制

疲劳裂纹萌生后会沿着有最大切应力的滑移面方向扩展,当扩展至某一深度或遇到晶界后,滑移受到阻塞,裂纹开始沿着垂直于拉应力的方向扩展,即进入疲劳扩展第II阶段[25]。关于裂纹扩展机制主要存在滑移分离和累积损伤2种观点,前者通过裂纹尖端的钝化-复锐机制逐步扩展,后者通过微孔连接、聚集实现。从断口形貌可以得知,上述2种机制在裂纹扩展中并非独立存在而是共同作用,由钝化-复锐机制向微孔聚集机制转变。

当ΔK较低时,在裂纹扩展中切应力占据主导地位,属于钝化-复锐机制的扩展过程。裂纹尖端在加载时受切应力作用发射位错(图9a1),尖端发生局部滑移实现扩展进而发生钝化(图9a2),卸载过程中滑移反向(图9a3),最终裂纹尖端发生闭合重新锐化完成扩展(图9a4)并进行下一循环。此外在切应力影响下形成大量二次裂纹,从而释放裂纹尖端的应力集中,降低裂纹扩展的驱动力[26]

图9

图9   2种疲劳裂纹扩展机制示意图

Fig.9   Schematics of blunting/re-sharpening (a1-a4) and microvoid coalescence (b1, b2) fatigue crack growth mechanisms

(a1) tensile load (a2) maximum tensile load (a3) compress load (a4) zero load

(b1) microvoid nucleation (b2) microvoid growth


随着裂纹塑性区的增大,裂纹尖端发射的位错增多,导致在晶界和其他障碍处(如缺陷、第二相颗粒)塞积形成微孔(图9b1),随着正应力逐渐占据主导,微孔相互聚集形成韧窝(图9b2)。这一过程本质上更倾向于恒定载荷下的静态拉伸,所以增加了SLM TC4合金的疲劳裂纹扩展速率。

而SLM打印过程中缺陷的存在,使裂纹得以通过连接缺陷实现扩展,一定程度上减弱了位错塞积滑移和微孔聚集长大2种方式的作用,减少了裂纹扩展的能量消耗,加速了裂纹扩展过程。同时由于缺陷在基体中分布的随机性和不确定性,推测在整个稳态扩展阶段缺陷对钝化-复锐机制(图10a)和微孔聚集机制(图10b)有着相似的影响效果。这种效果的加速作用受缺陷尺寸直接影响,缺陷尺寸越大,裂纹扩展速率越快,因此图5a中含大尺寸缺陷试样的da / dN曲线较小尺寸缺陷向上平移。

图10

图10   缺陷对裂纹尖端的影响示意图

Fig.10   Schematics of effects of defects on crack tips of blunting/re-sharpening (a) and microvoid coalescence (b) mechanisms


在疲劳裂纹扩展中,切应力的作用主要依靠循环载荷作用下的位错损伤累积,而正应力的影响则更倾向于静态拉伸引起的断裂形式。因此基于裂纹扩展机制的转变,可以借助临界平面法中临界平面上最大正应力和切应力幅的比值——临界平面应力比(ρ),来衡量正应力与切应力的关系,进而考虑2种应力对疲劳损伤的综合影响[27]。在单轴疲劳中切应力主要受应力幅的影响,而正应力主要受最大应力影响,可以计算临界平面上的切应力和正应力分量:

τa=σa2=14σmax1-R
(6)
σn, max=σmax2
(7)

式中,τa为临界平面上的切应力幅,σa为正应力幅,σmax为最大正应力,σn, max为临界平面上的最大正应力。因此ρ可表示为:

ρ=σn, max / τa=21-R
(8)

式(8)求得R = 0.1、0.3和0.5下的ρ分别为2.22、2.86和4.00,即增大R,比起切应力,正应力对疲劳过程的作用在逐步增大。

由于正应力的存在会加速疲劳裂纹扩展,但在ΔK较小的某一点其作用尚未显现,疲劳损伤仍主要依靠切应力作用下位错的不断循环累积,此时不同R下的da / dN没有差别。随着裂纹扩展,正应力的加速作用逐渐凸显,同时较大的R对应较高的ρρ增加,改变了正应力与切应力相对大小关系,进而提高了正应力在裂纹扩展过程中的加速效果,因此da / dN由大到小依次为R = 0.50.3、0.1。加之稳态扩展阶段的da / dN曲线呈双对数线性关系,导致不同R的拟合直线相交于同一点(即存在特定的旋转中心)。对 式(1)的Paris公式两边取对数可得,lg(da / dN) = lgC + lg(ΔK),显然如果存在固定的da / dNK点,那么lgCm之间将存在必然的线性关系。

3 结论

(1) 缺陷尺寸增大,稳态阶段疲劳裂纹扩展速率增大,Paris公式中的系数m不变,C增大;应力比R增大,稳态阶段疲劳裂纹扩展速率增大,曲线在低应力强度因子时汇集,Paris公式中的材料系数m增大,C减小,m和lgC之间存在不受R影响的线性关系。

(2) SLM TC4合金的疲劳裂纹扩展过程由钝化-复锐机制向微孔聚集机制发生转变。随着R增大,正应力作用增加,断口中表现出延性断裂特征,二次裂纹数量明显减少,韧窝数量明显增加。

(3) 通过对循环变形过程中正、切应力对疲劳损伤的不同作用,结合疲劳断裂损伤机制,揭示了不同R下lgCm呈线性关系的本质原因:ΔK较小时,正应力作用不明显,切应力作用不受应力比影响,导到da / dNK曲线汇聚在一点。

参考文献

Cui C X, Hu B M, Zhao L C, et al.

Titanium alloy production technology, market prospects and industry development

[J]. Mater. Des., 2011, 32: 1684

DOI      URL     [本文引用: 1]

Pushp P, Dasharath S M, Arati C.

Classification and applications of titanium and its alloys

[J]. Mater. Today: Proc., 2022, 54: 537

[本文引用: 1]

Ke L D, Yin J, Zhu H H, et al.

Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting

[J]. Acta Metall. Sin., 2020, 56: 374

DOI      [本文引用: 1]

Selective laser melting (SLM) is a very promising additive manufacturing (AM) technology for fabrication of thin-walled parts due to its high forming accuracy with complex shape. The higher temperature gradient in rapid heating and cooling process is prone to produce larger thermal stress, which will induce warpage deformation of SLMed parts. However, most of the current SLM stress studies focus on the residual stress, and only a few reports on the transient stress in the thermal cycle during SLM. In this work, a thermal-mechanical coupled transient dynamic finite element model was established to study the effects of laser scan rate and layer thickness on stress evolution during SLM processing. The results show that under the action of thermal cycle, the internal stress evolution in SLM of titanium alloy thin-walled parts presents a thermal stress cycle. Under the relief annealing of the thermal stress cycle, the peak thermal stress increases first and then decreases in the heating stage, and stabilizes and approaches the value of residual stress in the cooling stage. The residual stress of SLMed thin-walled parts is less than the transient peak stress during heating. After several thermal cycles with stress relief annealing effect, the peak thermal stress of SLM thin-walled parts can be reduced by more than 30%.

柯林达, 殷 杰, 朱海红, .

钛合金薄壁件选区激光熔化应力演变的数值模拟

[J]. 金属学报, 2020, 56: 374

DOI      [本文引用: 1]

建立了选区激光熔化(SLM)热-结构耦合瞬时动态有限元模型,探究了激光扫描速率和铺粉层厚度对SLM成形钛合金薄壁件应力演变的影响。结果表明,在热循环作用下,SLM成形钛合金薄壁件的应力演变呈周期性变化。在热应力循环去应力退火作用下,热应力极大值在加热阶段先增加后减小,最后在冷却阶段趋于稳定并接近残余应力。SLM成形薄壁件最终残余应力小于加热过程中的瞬时应力峰值。随沉积高度的增加,热循环作用减弱,应力极大值下降幅度逐渐减小。经过多次热循环去应力退火作用后,SLM成形薄壁件过程中的热应力极大值下降幅度可达30%以上。

Frazier W E.

Metal additive manufacturing: A review

[J]. J. Mater. Eng. Perform., 2014, 23: 1917

DOI      URL     [本文引用: 1]

Zhang F Y, Tan H, Chen J, et al.

Influence of mixing enthalpy on the microstructure of laser multilayer deposited Ti-6Al-4V alloy

[J]. Acta Metall. Sin., 2012, 48: 159

DOI      URL     [本文引用: 1]

张凤英, 谭 华, 陈 静 .

混合焓对激光多层沉积Ti-6Al-4V合金凝固组织的影响

[J]. 金属学报, 2012, 48: 159

DOI      [本文引用: 1]

分别以预合金粉末和混合元素粉末为原料进行激光多层沉积Ti-6A-4V合金, 采用XRD研究了预合金粉末、混合元素粉末和沉积试样的相组成,采用金相显微镜研究了沉积试样的凝固组织. 结果表明, 预合金法激光多层沉积Ti-6Al-4V合金的凝固组织由外延生长的柱状晶组成,且随激光功率的提高, 合金凝固组织倾向于由柱状晶转变为等轴晶; 随着激光功率由1600 W增加至2700 W, 混合元素法激光多层沉积Ti-6Al-4V合金的凝固组织则由粗大等轴晶逐渐转变为外延生长的柱状晶.扫描速率对合金凝固组织的影响较小. 对混合焓对合金凝固组织的影响进行了讨论.

Meng L X, Yang H J, Ben D D, et al.

Effects of defects and microstructures on tensile properties of selective laser melted Ti6Al4V alloys fabricated in the optimal process zone

[J]. Mater. Sci. Eng., 2022, A830: 142294

Liu Z Q, Xu G J, Wang W, et al.

Effect of laser 3D printing process on quality of titanium alloy

[J]. J. Shenyang Univ. Technol., 2020, 42: 57

[本文引用: 1]

刘占起, 徐国建, 王 蔚 .

激光3D打印工艺对钛合金质量的影响

[J]. 沈阳工业大学学报, 2020, 42: 57

DOI      [本文引用: 1]

为了解决传统锻造方法锻造TC4钛合金时容易造成的生产效率低且锻造形状简单等问题,对TC4钛合金进行了激光3D打印,并确定了最佳激光3D打印工艺参数.利用金相显微镜和扫描电子显微镜对TC4钛合金单道打印层的成形质量、显微组织与相组成进行了分析.利用显微维氏硬度计和万能拉伸试验机测量了打印层的硬度和拉伸力学性能.结果表明,在最佳工艺参数下TC4钛合金打印成形良好,其打印层组织主要由片层状α固溶体组成.打印层的Z向拉伸强度指标低于XY向,而Z向拉伸塑性指标高于XY向,且Z向强度和塑性指标均超越了TC4锻件国家标准(GB/T 25137-2010).同时Z向和XY向拉伸断口形貌均为塑性断口.

Xu W, Brandt M, Sun S, et al.

Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition

[J]. Acta Mater., 2015, 85: 74

DOI      URL     [本文引用: 1]

Yan X C, Yin S, Chen C Y, et al.

Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting

[J]. J. Alloys Compd., 2018, 764: 1056

DOI      URL    

Vrancken B, Thijs L, Kruth J P, et al.

Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties

[J]. J. Alloys Compd., 2012, 541: 177

DOI      URL     [本文引用: 1]

Sanaei N, Fatemi A.

Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review

[J]. Prog. Mater Sci., 2021, 117: 100724

DOI      URL     [本文引用: 1]

Wu Z K, Wu S C, Zhang J, et al.

Defect induced fatigue behaviors of selective laser melted Ti-6Al-4V via synchrotron radiation X-ray tomography

[J]. Acta Metall. Sin., 2019, 55: 811

DOI      [本文引用: 1]

As a very promising additive manufacturing (AM) technique, selective laser melting (SLM) has gained considerable attentions due to the feasibility of producing light-weight metallic components directly from virtual design data. On the other hand, high strength, low density and high corrosion resistance Ti-6Al-4V alloy has been a preferred AM used material for the aviation and military industries. However, the fatigue damage behaviors of SLMed or AMed components usually suffer from interior defects such as incomplete fusion and gas pores due to unstable process or unsuitable processing parameters. Therefore, thorough investigations on process-induced and metallurgical defects and its influence on the fatigue behavior is required for robust designs and engineering applications of high performance SLM components. As an advanced characterization approach, synchrotron radiation micro computed X-ray tomography (SR-μCT) has been recently to investigate the fatigue damage behaviors of critical components with defects. Based on self-developed in situ fatigue testing rig fully compatible with the BL13W1 at Shanghai Synchrotron Radiation Facility (SSRF), several AMed specimens were prepared for in situ fatigue SR-μCT. The Feret diameter and extreme values statistics were then adopted to characterize the defect size, morphology, population, location and the influence on fatigue life. Fatigue fractography was also examined to further identify the defect to really initiate a fatigue crack. Results show that two types of defects including gas pores and the lack of fusion can be clearly distinguished inside SLM Ti-6Al-4V alloys. Fatigue crack with a typical semi-ellipse usually initiates from the defects at the surface and near the surface. Besides, the defects less than 50 μm and sphericity of 0.4~0.65 dominate for the SLM Ti-6Al-4V alloys. It is also found that the larger the characteristic size of the defect, the lower the fatigue life. Current results can provide a theoretical basis and support to predict the fatigue performance of SLM Ti-6Al-4V alloys. Further investigations should be performed on the relationship between the critical defect and fatigue strength by introducing the Kitagawa-Takahashi diagram.

吴正凯, 吴圣川, 张 杰 .

基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为

[J]. 金属学报, 2019, 55: 811

DOI      [本文引用: 1]

基于自主研制的原位疲劳试验机和高分辨同步辐射X射线三维成像技术,采用Feret直径和极值统计方法定量表征选区激光熔化Ti-6Al-4V合金的缺陷特征尺寸、数量、位置及形貌,原位观测疲劳裂纹的萌生与扩展行为,通过辨识疲劳断口源区的缺陷特征,开展缺陷诱导的疲劳损伤评价研究,从而建立缺陷特征与疲劳寿命之间的关系。分析表明,缺陷主要为未熔合和气孔,等效直径小于50 μm的频率为90%,球度分布于0.4~0.65之间;在不考虑表面粗糙度的情况下,疲劳裂纹优先在试样表面或近表面缺陷处萌生,呈现出典型的半椭圆形貌;同时缺陷特征尺寸越大,疲劳寿命越低。研究结果为增材高性能部件的疲劳性能及寿命评估提供了重要的理论参考。

Hui L, Wang N, Zhou S, et al.

Selective laser melting of TC4 titanium alloy fatigue and fracture

[J]. Sci. Technol. Eng., 2020, 20: 5844

[本文引用: 1]

回 丽, 王 宁, 周 松 .

激光选区熔化TC4钛合金疲劳与断裂

[J]. 科学技术与工程, 2020, 20: 5844

[本文引用: 1]

Cain V, Thijs L, Van Humbeeck J, et al.

Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting

[J]. Addit. Manuf., 2015, 5: 68

[本文引用: 1]

Rans C, Michielssen J, Walker M, et al.

Beyond the orthogonal: On the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V

[J]. Int. J. Fatigue, 2018, 116: 344

DOI      URL     [本文引用: 1]

Tarik Hasib M, Ostergaard H E, Li X P, et al.

Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation

[J]. Int. J. Fatigue, 2021, 142: 105955

DOI      URL     [本文引用: 1]

Zhang H Y, Dong D K, Su S P, et al.

Experimental study of effect of post processing on fracture toughness and fatigue crack growth performance of selective laser melting Ti-6Al-4V

[J]. Chin. J. Aeronaut., 2019, 32: 2383

DOI      URL     [本文引用: 1]

Kumar P, Ramamurty U.

Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti6Al4V alloy

[J]. Acta Mater., 2019, 169: 45

DOI      URL     [本文引用: 1]

Qi Z, Wang B, Zhang P, et al.

Different effects of multiscale microstructure on fatigue crack growth path and rate in selective laser melted Ti6Al4V

[J]. Fatigue Fract. Eng. Mater. Struct., 2022, 45: 2457

DOI      URL     [本文引用: 1]

Dubey S, Soboyejo A B O, Soboyejo W O.

An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V

[J]. Acta Mater., 1997, 45: 2777

DOI      URL     [本文引用: 1]

Shademan S, Sinha V, Soboyejo A B O, et al.

An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6Al-4V with colony α/β microstructures

[J]. Mech. Mater., 2004, 36: 161

DOI      URL     [本文引用: 1]

Paris P, Erdogan F.

A critical analysis of crack propagation laws

[J]. J. Basic Eng., 1963, 85: 528

DOI      URL     [本文引用: 1]

The practice of attempting validation of crack-propagation laws (i.e., the laws of Head, Frost and Dugdale, McEvily and Illg, Liu, and Paris) with a small amount of data, such as a few single specimen test results, is questioned. It is shown that all the laws, though they are mutually contradictory, can be in agreement with the same small sample of data. It is suggested that agreement with a wide selection of data from many specimens and over many orders of magnitudes of crack-extension rates may be necessary to validate crack-propagation laws. For such a wide comparison of data a new simple empirical law is given which fits the broad trend of the data.

Xu F, Zhou S L, Shi K X.

Effects of stress ratio on fatigue crack growth rate of TC4-DT alloy

[J]. Hot Work. Technol., 2010, 39: 33

[本文引用: 1]

许 飞, 周善林, 石科学.

应力比对TC4-DT钛合金疲劳裂纹扩展速率的影响

[J]. 热加工工艺, 2010, 39: 33

[本文引用: 1]

Zhang Y J, Zhang X Y, Zhang Y H.

Pertinence of material constants in paris model for fatigue crack propagation rate of metallic materials

[J]. Dev. Appl. Mater., 2021, 36: 1

[本文引用: 1]

张亚军, 张欣耀, 张云浩.

金属材料疲劳裂纹扩展速率Paris模型中材料常数的相关性

[J]. 材料开发与应用, 2021, 36: 1

[本文引用: 1]

Chowdhury P, Sehitoglu H.

Mechanisms of fatigue crack growth—A critical digest of theoretical developments

[J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 652

DOI      URL     [本文引用: 1]

Zhang L, Liu Y Y, Xue X H, et al.

Crack growth rate of TC18 alloy with different microstructure

[J]. Chin. J. Rare Met., 2018, 42: 594

[本文引用: 1]

张 乐, 刘莹莹, 薛希豪 .

显微组织对TC18合金裂纹扩展速率的影响

[J]. 稀有金属, 2018, 42: 594

[本文引用: 1]

Susmel L, Tovo R, Lazzarin P.

The mean stress effect on the high-cycle fatigue strength from a multiaxial fatigue point of view

[J]. Int. J. Fatigue, 2005, 27: 928

DOI      URL     [本文引用: 1]

/