|
|
基于高通量制备的增材制造材料成分设计 |
张百成1,2( ), 张文龙1,2, 曲选辉1,2 |
1.北京科技大学 新材料技术研究院 北京材料基因工程高精尖创新中心 北京 100083 2.北京科技大学 现代交通金属材料与加工技术北京实验室 北京 100083 |
|
Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation |
ZHANG Baicheng1,2( ), ZHANG Wenlong1,2, QU Xuanhui1,2 |
1.Beijing Advanced Innovation Center for Materials Genome Engineering, Advanced Material & Technology Institute, University of Science and Technology Beijing, Beijing 100083, China 2.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
张百成, 张文龙, 曲选辉. 基于高通量制备的增材制造材料成分设计[J]. 金属学报, 2023, 59(1): 75-86.
Baicheng ZHANG,
Wenlong ZHANG,
Xuanhui QU.
Composition Design of Additive Manufacturing Materials Based on High Throughput Preparation[J]. Acta Metall Sin, 2023, 59(1): 75-86.
1 |
Tian X, Li D, Lu B. Additive Manufacturing: Controllable fabrication for integrated micro and macro structures [J]. J. Ceram. Sci. Technol., 2014, 5: 261
|
2 |
Lu B H. Additive manufacturing—Current situation and future [J]. China Mech. Eng., 2020, 31: 19
|
2 |
卢秉恒. 增材制造技术——现状与未来 [J]. 中国机械工程, 2020, 31: 19
|
3 |
Liu Z Y, He B, Lyu T Y, et al. A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V [J]. JOM, 2021, 73: 1804
doi: 10.1007/s11837-021-04670-6
|
4 |
Wei J, Chu X, Sun X Y, et al. Machine learning in materials science [J]. InfoMat, 2019, 1: 338
doi: 10.1002/inf2.12028
|
5 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in china [J]. Acta Metall. Sin., 2020, 56: 1313
|
5 |
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
|
6 |
Miracle D B, Li M, Zhang Z H, et al. Emerging capabilities for the high-throughput characterization of structural materials [J]. Annu. Rev. Mater. Res., 2021, 51: 131
doi: 10.1146/annurev-matsci-080619-022100
|
7 |
Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
|
8 |
Azarniya A, Colera X G, Mirzaali M J, et al. Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties [J]. J. Alloys Compd., 2019, 804: 163
doi: 10.1016/j.jallcom.2019.04.255
|
9 |
Yin Y, Tan Q Y, Bermingham M, et al. Laser additive manufacturing of steels [J]. Int. Mater. Rev., 2022, 67: 487
doi: 10.1080/09506608.2021.1983351
|
10 |
Debroy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components—Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
|
11 |
Jiang Q, Zhang P P, Yu Z S, et al. A review on additive manufacturing of pure copper [J]. Coatings, 2021, 11: 740
doi: 10.3390/coatings11060740
|
12 |
Bobbio L D, Otis R A, Borgonia J P, et al. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations [J]. Acta Mater., 2017, 127: 133
doi: 10.1016/j.actamat.2016.12.070
|
13 |
Wen Y J, Zhang B C, Narayan R L, et al. Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718 [J]. Addit. Manuf., 2021, 40: 101926
|
14 |
Li Q G, Li G C, Lin X, et al. Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using laser powder bed fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms [J]. Addit. Manuf., 2022, 57: 102967
|
15 |
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
|
16 |
Wang Z, Ummethala R, Singh N, et al. Selective laser melting of aluminum and its alloys [J]. Materials, 2020, 13: 4564
doi: 10.3390/ma13204564
|
17 |
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
|
18 |
Samuel A M, Garza-Elizondo G H, Doty H W, et al. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys [J]. Mater. Des., 2015, 80: 99
doi: 10.1016/j.matdes.2015.05.013
|
19 |
Yang J S, Liu C H, Ma P P, et al. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy [J]. Int. J. Plast., 2022, 158: 103413
doi: 10.1016/j.ijplas.2022.103413
|
20 |
Kenevisi M S, Yu Y F, Lin F. A review on additive manufacturing of Al-Cu (2xxx) aluminium alloys, processes and defects [J]. Mater. Sci. Technol., 2021, 37: 805
doi: 10.1080/02670836.2021.1958487
|
21 |
Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Mater., 2016, 117: 311
doi: 10.1016/j.actamat.2016.07.012
|
22 |
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
|
23 |
Zhang H, Zhu H H, Nie X J, et al. Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
|
24 |
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
|
25 |
Jin P, Liu Y B, Li F X, et al. Realization of synergistic enhancement for fracture strength and ductility by adding TiC particles in wire and arc additive manufacturing 2219 aluminium alloy [J]. Composites, 2021, 219B: 108921
|
26 |
Leijon F, Wachter S, Fu Z W, et al. A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti, -Zr and -Nb alloys [J]. Mater. Des., 2021, 211: 110129
doi: 10.1016/j.matdes.2021.110129
|
27 |
Yang X P, Liu C R. Machining titanium and its alloys [J]. Mach. Sci. Technol., 1999, 3: 107
doi: 10.1080/10940349908945686
|
28 |
Li J H, Zhou X L, Brochu M, et al. Solidification microstructure simulation of Ti-6Al-4V in metal additive manufacturing: A review [J]. Addit. Manuf., 2020, 31: 100989
|
29 |
Lütjering G, Williams J C, Gysler A. Microstructure and mechanical properties of titanium alloys [A]. Microstructure and Properties of Materials [M]. Singapore: World Scientific, 2000: 1
|
30 |
Wei K W, Zeng X Y, Huang G, et al. Selective laser melting of Ti-5Al-2.5Sn alloy with isotropic tensile properties: The combined effect of densification state, microstructural morphology, and crystallographic orientation characteristics [J]. J. Mater. Process. Technol., 2019, 271: 368
doi: 10.1016/j.jmatprotec.2019.04.003
|
31 |
Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Mater., 2015, 87: 309
doi: 10.1016/j.actamat.2014.12.054
|
32 |
Zhao D L, Han C J, Li Y, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting [J]. J. Alloys Compd., 2019, 804: 288
doi: 10.1016/j.jallcom.2019.06.307
|
33 |
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
|
34 |
Alcisto J, Enriquez A, Garcia H, et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V [J]. J. Mater. Eng. Perform., 2011, 20: 203
doi: 10.1007/s11665-010-9670-9
|
35 |
Amsterdam E, Kool G A. High cycle fatigue of laser beam deposited Ti-6Al-4V and Inconel 718 [A]. ICAF 2009, Bridging the gap between theory and operational practice [M]. Dordrecht: Springer, 2009: 1261
|
36 |
Simonelli M, Tse Y Y, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V [J]. Mater. Sci. Eng., 2014, A616: 1
|
37 |
Zhai Y W, Galarraga H, Lados D A. Microstructure, static properties, and fatigue crack growth mechanisms in Ti-6Al-4V fabricated by additive manufacturing: LENS and EBM [J]. Eng. Fail. Anal., 2016, 69: 3
doi: 10.1016/j.engfailanal.2016.05.036
|
38 |
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
|
39 |
Zhang T L, Huang Z H, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing [J]. Science, 2021, 374: 478
doi: 10.1126/science.abj3770
pmid: 34672735
|
40 |
Gong X Y, Yabansu Y C, Collins P C, et al. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and gaussian process regression [J]. Materials, 2020, 13: 4641
doi: 10.3390/ma13204641
|
41 |
Svetlizky D, Zheng B L, Vyatskikh A, et al. Laser-based directed energy deposition (DED-LB) of advanced materials [J]. Mater. Sci. Eng., 2022, A840: 142967
|
42 |
Haghdadi N, Laleh M, Moyle M, et al. Additive manufacturing of steels: A review of achievements and challenges [J]. J. Mater. Sci., 2021, 56: 64
doi: 10.1007/s10853-020-05109-0
|
43 |
Karlsson D, Chou C Y, Pettersson N H, et al. Additive manufacturing of the ferritic stainless steel SS441 [J]. Addit. Manuf., 2020, 36: 101580
|
44 |
Zhong Y, Liu L F, Wikman S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting [J]. J. Nucl. Mater., 2016, 470: 170
doi: 10.1016/j.jnucmat.2015.12.034
|
45 |
Casati R, Lemke J N, Tuissi A, et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting [J]. Metals, 2016, 6 :218
doi: 10.3390/met6090218
|
46 |
Krell J, Röttger A, Geenen K, et al. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting [J]. J. Mater. Process. Technol., 2018, 255: 679
doi: 10.1016/j.jmatprotec.2018.01.012
|
47 |
Durga A, Pettersson N H, Malladi S B A, et al. Grain refinement in additively manufactured ferritic stainless steel by in situ inoculation using pre-alloyed powder [J]. Scr. Mater., 2021, 194: 113690
doi: 10.1016/j.scriptamat.2020.113690
|
48 |
Benjamin D, Kirkpatrick C W. Properties and Selection, Stainless Steels, Tool Materials and Special Purpose Metals[M]. 9th Ed., Metals Park, Ohio: American Society for Metals, 1980: 1
|
49 |
Suryawanshi J, Prashanth K G, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel [J]. Mater. Sci. Eng., 2017, A696: 113
|
50 |
Wang Y M, Voisin T, Mckeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
|
51 |
Yin Y J, Sun J Q, Guo J, et al. Mechanism of high yield strength and yield ratio of 316L stainless steel by additive manufacturing [J]. Mater. Sci. Eng., 2019, A744: 773
|
52 |
Bajaj P, Hariharan A, Kini A, et al. Steels in additive manufacturing: A review of their microstructure and properties [J]. Mater. Sci. Eng., 2020, A772: 138633
|
53 |
Ren B, Lu D, Zhou R, et al. Preparation and mechanical properties of selective laser melted H13 steel [J]. J. Mater. Res., 2019, 34: 1415
doi: 10.1557/jmr.2019.10
|
54 |
Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
|
55 |
Jebaraj A V, Ajaykumar L, Deepak C R, et al. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications—A recent review [J]. J. Adv. Res., 2017, 8: 183
doi: 10.1016/j.jare.2017.01.002
pmid: 28203458
|
56 |
Saeidi K, Kevetkova L, Lofaj F, et al. Novel ferritic stainless steel formed by laser melting from duplex stainless steel powder with advanced mechanical properties and high ductility [J]. Mater. Sci. Eng., 2016, A665: 59
|
57 |
Hengsbach F, Koppa P, Duschik K, et al. Duplex stainless steel fabricated by selective laser melting—Microstructural and mechanical properties [J]. Mater. Des., 2017, 133: 136
doi: 10.1016/j.matdes.2017.07.046
|
58 |
Li H K, Thomas S, Hutchinson C. Delivering microstructural complexity to additively manufactured metals through controlled mesoscale chemical heterogeneity [J]. Acta Mater., 2022, 226: 117637
doi: 10.1016/j.actamat.2022.117637
|
59 |
Sun S H, Ishimoto T, Hagihara K, et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting [J]. Scr. Mater., 2019, 159: 89
doi: 10.1016/j.scriptamat.2018.09.017
|
60 |
Mower T M, Long M J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials [J]. Mater. Sci. Eng., 2016, A651: 198
|
61 |
Yadollahi A, Shamsaei N, Thompson S M, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel [J]. Mater. Sci. Eng., 2015, A644: 171
|
62 |
Mooney B, Kourousis K I, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments [J]. Addit. Manuf., 2019, 25: 19
doi: 10.1016/j.addma.2018.10.032
|
63 |
Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of selective laser melted 18Ni-300 steel [J]. Phys. Procedia, 2011, 12: 255
doi: 10.1016/j.phpro.2011.03.033
|
64 |
Suryawanshi J, Prashanth K G, Ramamurty U. Tensile, fracture, and fatigue crack growth properties of a 3 D printed maraging steel through selective laser melting [J]. J. Alloys Compd., 2017, 725: 355
doi: 10.1016/j.jallcom.2017.07.177
|
65 |
Tan C L, Zhou K S, Kuang M, et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions [J]. Sci. Technol. Adv. Mater., 2018, 19: 746
doi: 10.1080/14686996.2018.1527645
|
66 |
Deb Nath S, Irrinki H, Gupta G, et al. Microstructure-property relationships of 420 stainless steel fabricated by laser-powder bed fusion [J]. Powder Technol., 2019, 343: 738
doi: 10.1016/j.powtec.2018.11.075
|
67 |
Alam M K, Mehdi M, Urbanic R J, et al. Mechanical behavior of additive manufactured AISI 420 martensitic stainless steel [J]. Mater. Sci. Eng., 2020, A773: 138815
|
68 |
Kudzal A, Mcwilliams B, Hofmeister C, et al. Effect of scan pattern on the microstructure and mechanical properties of powder bed fusion additive manufactured 17-4 stainless steel [J]. Mater. Des., 2017, 133: 205
doi: 10.1016/j.matdes.2017.07.047
|
69 |
Murr L E, Martinez E, Hernandez J, et al. Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting [J]. J. Mater. Res. Technol, 2012, 1: 167
doi: 10.1016/S2238-7854(12)70029-7
|
70 |
Shang F, Chen X Q, Wang Z Y, et al. The microstructure, mechanical properties, and corrosion resistance of UNS S32707 hyper-duplex stainless steel processed by selective laser melting [J]. Metals, 2019, 9: 1012
doi: 10.3390/met9091012
|
71 |
Baghdadchi A, Hosseini V A, Valiente Bermejo M A, et al. Wire laser metal deposition of 22%Cr duplex stainless steel: As-deposited and heat-treated microstructure and mechanical properties [J]. J. Mater. Sci., 2022, 57: 9556
doi: 10.1007/s10853-022-06878-6
|
72 |
Kunz J, Boontanom A, Herzog S, et al. Influence of hot isostatic pressing post-treatment on the microstructure and mechanical behavior of standard and super duplex stainless steel produced by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A794: 139806
|
73 |
Mally L, Werz M, Weihe S. Feasibility study on additive manufacturing of ferritic steels to meet mechanical properties of safety relevant forged parts [J]. Materials, 2022, 15: 383
doi: 10.3390/ma15010383
|
74 |
Nie J J, Wei L, Li D-L, et al. High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L-SS431 graded material [J]. Addit. Manuf., 2020, 35: 101295
|
75 |
Li Q Q, Wen Y J, Zhang B C, et al. Research progress of functional graded alloy prepared by additive manufacturing technology [J]. J. Mech. Eng., 2021, 57: 184
doi: 10.3901/JME.2021.22.184
|
75 |
李祺祺, 温耀杰, 张百成 等. 梯度功能合金的增材制造技术研究进展 [J]. 机械工程学报, 2021, 57: 184
doi: 10.3901/JME.2021.22.184
|
76 |
Wang D, Deng G W, Yang Y Q, et al. Interface microstructure and mechanical properties of selective laser melted multilayer functionally graded materials [J]. J. Cent. South Univ., 2021, 28: 1155
doi: 10.1007/s11771-021-4687-9
|
77 |
Zhang B C, Zhang L, Ren S B, et al. Device and method for preparing gradient material based on selective laser melting technology [P]. Chin Pat, CN108480630B, 2019
|
77 |
张百成, 章 林, 任淑彬 等. 一种基于选区激光熔化技术制备梯度材料的装置及方法 [P]. 中国专利, CN108480630B, 2019)
|
78 |
Collins P C, Banerjee R, Banerjee S, et al. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys [J]. Mater. Sci. Eng., 2003, A352: 118
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|