|
|
应变工程中Bi(111)薄膜的半导体-半金属转变及其机理 |
任师浩1, 刘永利1( ), 孟凡顺2, 祁阳1 |
1.东北大学 材料科学与工程学院 沈阳 110819 2.辽宁科技大学 理学院 锦州 121001 |
|
Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film |
REN Shihao1, LIU Yongli1( ), MENG Fanshun2, QI Yang1 |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.School of Science, Liaoning University of Technology, Jinzhou 121001, China |
引用本文:
任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
Shihao REN,
Yongli LIU,
Fanshun MENG,
Yang QI.
Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. Acta Metall Sin, 2022, 58(7): 911-920.
1 |
Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
doi: 10.1103/RevModPhys.83.1057
|
2 |
Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
doi: 10.1103/RevModPhys.82.3045
|
3 |
Koroteev Y M, Bihlmayer G, Chulkov E V, et al. First-principles investigation of structural and electronic properties of ultrathin Bi films [J]. Phys. Rev., 2008, 77B: 045428
|
4 |
Dong C H, Liu Y L, Qi Y. Effect of thickness on the surface and electronic properties of Bi film [J]. Acta Metall. Sin., 2018, 54: 935
|
4 |
董彩虹, 刘永利, 祁 阳. 厚度对Bi薄膜表面特性和电学性质的影响 [J]. 金属学报, 2018, 54: 935
doi: 10.11900/0412.1961.2017.00422
|
5 |
Wang N, Dai Y X, Wang T L, et al. Investigation of growth characteristics and semimetal-semiconductor transition of polycrystalline bismuth thin films [J]. IUCrJ, 2020, 7: 49
doi: 10.1107/S2052252519015458
pmid: 31949904
|
6 |
Yao M Y, Zhu F F, Han C Q, et al. Topologically nontrivial bismuth(111) thin films [J]. Sci. Rep., 2016, 6: 21326
doi: 10.1038/srep21326
|
7 |
Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films [J]. Surf. Sci., 2007, 601: 3593
doi: 10.1016/j.susc.2007.06.075
|
8 |
Hatta S, Ohtsubo Y, Miyamoto S, et al. Epitaxial growth of Bi thin films on Ge(111) [J]. Appl. Surf. Sci., 2009, 256: 1252
doi: 10.1016/j.apsusc.2009.05.079
|
9 |
Ast C R, Höchst H. Electronic structure of a bismuth bilayer [J]. Phys. Rev., 2003, 67B: 113102
|
10 |
Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films [J]. Phys. Rev. Lett., 2006, 97: 146803
doi: 10.1103/PhysRevLett.97.146803
|
11 |
Takayama A, Sato T, Souma S, et al. Tunable spin polarization in bismuth ultrathin film on Si(111) [J]. Nano Lett., 2012, 12: 1776
doi: 10.1021/nl2035018
pmid: 22448971
|
12 |
Ast C R, Höchst H. Fermi surface of Bi(111) measured by photoemission spectroscopy [J]. Phys. Rev. Lett., 2001, 87: 177602
doi: 10.1103/PhysRevLett.87.177602
|
13 |
Xiao S H, Wei D H, Jin X F. Bi(111) thin film with insulating interior but metallic surfaces [J]. Phys. Rev. Lett., 2012, 109: 166805
doi: 10.1103/PhysRevLett.109.166805
|
14 |
Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films [J]. Phys. Rev., 1993, 48B: 11431
|
15 |
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study [J]. Phys. Rev. Lett., 2011, 107: 136805
doi: 10.1103/PhysRevLett.107.136805
|
16 |
Wang D C, Chen L, Liu H M, et al. Electronic structures and topological properties of Bi(111) ultrathin films [J]. J. Phys. Soc. Jpn., 2013, 82: 094712
|
17 |
Falvo M R, Clary G J, Taylor II R M, et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature, 1997, 389: 582
doi: 10.1038/39282
|
18 |
Cai Y Q, Zhang A H, Feng Y P, et al. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes [J]. J. Chem. Phys., 2009, 131: 224701
doi: 10.1063/1.3267473
|
19 |
Hirahara T, Fukui N, Shirasawa T, et al. Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111) substrates: Eevidence for a strain-induced topological phase transition [J]. Phys. Rev. Lett., 2012, 109: 227401
doi: 10.1103/PhysRevLett.109.227401
|
20 |
Wang Z F, Yao M Y, Ming W M, et al. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions [J]. Nat. Commun., 2013, 4: 1384
doi: 10.1038/ncomms2387
pmid: 23340424
|
21 |
Miao L, Wang Z F, Ming W M, et al. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 2758
doi: 10.1073/pnas.1218104110
|
22 |
Chen L, Wang Z F, Liu F. Robustness of two-dimensional topological insulator states in bilayer bismuth against strain and electrical field [J]. Phys. Rev., 2013, 87B: 235420
|
23 |
Huang Z Q, Hsu C H, Chuang F C, et al. Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures [J]. New J. Phys., 2014, 16: 105018
doi: 10.1088/1367-2630/16/10/105018
|
24 |
Wang X X, Xu C Z, Hu H Z, et al. Topological phase stability and transformation of bismuthene [J]. EPL, 2017, 119: 27002
doi: 10.1209/0295-5075/119/27002
|
25 |
Peng X H, Copple A. Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study [J]. Phys. Rev., 2013, 87B: 115308
|
26 |
Copple A, Ralston N, Peng X H. Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain [J]. Appl. Phys. Lett., 2012, 100: 193108
doi: 10.1063/1.4718026
|
27 |
Peng X H, Velasquez S. Strain modulated band gap of edge passivated armchair graphene nanoribbons [J]. Appl. Phys. Lett., 2011, 98: 023112
|
28 |
Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene [J]. Phys. Rev., 2014, 90B: 085402
|
29 |
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
|
30 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
31 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
32 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
33 |
Nagao T, Sadowski J T, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7 [J]. Phys. Rev. Lett., 2004, 93: 105501
doi: 10.1103/PhysRevLett.93.105501
|
34 |
Mönig H, Sun J, Koroteev Y M, et al. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations [J]. Phys. Rev., 2005, 72B: 085410
|
35 |
Sholl D S, Steckel J A. Density Functional Theory: A Practical Introduction [M]. New Jersey: John Wiley & Sons Inc, 2009: 96
|
36 |
Wang J F. Solid State Physics Course [M]. 6th Ed., Jinan: Shandong University Press, 2008: 171
|
36 |
王矜奉. 固体物理教程 [M]. 第六版, 济南: 山东大学出版社, 2008: 171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|