Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 911-920    DOI: 10.11900/0412.1961.2021.00225
  研究论文 本期目录 | 过刊浏览 |
应变工程中Bi(111)薄膜的半导体-半金属转变及其机理
任师浩1, 刘永利1(), 孟凡顺2, 祁阳1
1.东北大学 材料科学与工程学院 沈阳 110819
2.辽宁科技大学 理学院 锦州 121001
Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film
REN Shihao1, LIU Yongli1(), MENG Fanshun2, QI Yang1
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.School of Science, Liaoning University of Technology, Jinzhou 121001, China
引用本文:

任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
Shihao REN, Yongli LIU, Fanshun MENG, Yang QI. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. Acta Metall Sin, 2022, 58(7): 911-920.

全文: PDF(2081 KB)   HTML
摘要: 

基于第一性原理,系统研究了不同层数Bi(111)薄膜的几何结构和能带性质,以及双轴应变对Bi(111)薄膜结构与电学性能的调控作用。研究结果表明:Bi(111)薄膜的几何结构以及能带性质具有厚度依赖性。随着厚度的增加,薄膜晶格常数增大,屈曲高度降低,表面能增加,带隙减小,并在3个双层时由半导体性质转变为半金属性质;对1个双层Bi(111)薄膜施加拉伸应变,可诱发间接带隙到直接带隙的转变以及能带反转;施加压缩应变可诱发半导体到半金属性质的转变,通过近带边电子轨道的成键性质分析,揭示了成键态和反键态对应变的不同响应速率,引起了导带底的转移,从而导致了半导体到半金属转变。类似的半导体到半金属转变也可在应变作用下的2~5个双层厚Bi(111)薄膜中预测到。应变也可调节Bi(111)薄膜的电子和空穴的有效质量,从而可能影响薄膜传输特性。

关键词 Bi薄膜应变能带结构第一性原理方法    
Abstract

Bi is a key semimetallic element with strong spin-orbit coupling characteristics, long Fermi wavelengths, quantum size effects, and competitive structural phases. Its spin-orbit coupling can induce the metal surface state of Bi thin film, which is completely different from its bulk properties, indicating that thin Bi film has important research significance in the control of the transmission performance of semiconductor sensors. The biaxial strain deformation and film thickness can induce the transition from semiconductors to semimetals and changes in topological properties. However, the current critical transition thickness obtained using different methods is contentious, and the inherent transition mechanism remains unclear. In this work, the effect and affecting mechanism of biaxial strain on the geometric and band structures of Bi thin films with different thicknesses of Bi thin films were systematically studied and discussed using a first-principles method based on density functional theories. The results show that the band and geometric structures of Bi(111) films are strongly correlated to the thickness. With the increase in the number of atomic layers, the lattice constant increases, the buckling height decreases, the surface energy increases, and the energy bandgap decreases, where a transition of the films from semiconductor to semimetal occurs at the critical thickness of three bilayers (BLs). The application of tensile strain to the one-BL Bi film can induce the transition of energy bandgap from indirect to direct semiconductor accompanied with a band inversion, whereas the compressive strain can induce the transition from semiconductor to semimetal. The analysis of the bond nature of the near-band-edge electronic orbitals revealed that the transition of the semiconductor to the semimetallic state originates from the transition of the conduction band minimum induced by the different response rates of the bonding and antibonding states of the band edge electrons to the strain. A similar transition can be observed for 2-5 Bi BL films under biaxial deformation. The strain deformation can also improve the transport property of Bi films by changing the effective mass of electrons and holes. These findings provide a theoretical insight to regulating the electronic properties of Bi film integrated electronic devices using the strain field.

Key wordsBi film    strain    energy band structure    first-principle method
收稿日期: 2021-05-26     
ZTFLH:  O484.4  
基金资助:国家自然科学基金项目(61971116)
作者简介: 任师浩,男,1996年生,硕士生
图1  Bi晶体结构、薄膜结构示意图以及薄膜性质随厚度的变化
图2  1~5 BL厚Bi(111)薄膜的能带结构及带隙
图3  施加双轴应变时1 BL厚Bi(111)薄膜能量和结构的变化
图4  1 BL厚Bi(111)薄膜在不同应变下的能带结构
图5  1 BL厚Bi(111)薄膜直接带隙和间接带隙随应变的变化
图6  1 BL厚Bi(111)薄膜导带底能量(ECBM)和价带顶能量(EVBM)随应变的变化及局域电荷密度分布
图7  1 BL厚Bi(111)薄膜导带边缘态在Γ点能量(ECB-Γ )和在V点能量(ECB-V )随应变变化以及CB-Γ、CB-V处的局域电荷密度分布
图8  1 BL厚Bi(111)薄膜中电子有效质量与空穴有效质量随应变变化曲线
图9  2 BL厚Bi(111)薄膜能带结构及带隙随应变的变化
图10  3~5 BL厚Bi(111)薄膜带隙随应变的变化
1 Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
doi: 10.1103/RevModPhys.83.1057
2 Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
doi: 10.1103/RevModPhys.82.3045
3 Koroteev Y M, Bihlmayer G, Chulkov E V, et al. First-principles investigation of structural and electronic properties of ultrathin Bi films [J]. Phys. Rev., 2008, 77B: 045428
4 Dong C H, Liu Y L, Qi Y. Effect of thickness on the surface and electronic properties of Bi film [J]. Acta Metall. Sin., 2018, 54: 935
4 董彩虹, 刘永利, 祁 阳. 厚度对Bi薄膜表面特性和电学性质的影响 [J]. 金属学报, 2018, 54: 935
doi: 10.11900/0412.1961.2017.00422
5 Wang N, Dai Y X, Wang T L, et al. Investigation of growth characteristics and semimetal-semiconductor transition of polycrystalline bismuth thin films [J]. IUCrJ, 2020, 7: 49
doi: 10.1107/S2052252519015458 pmid: 31949904
6 Yao M Y, Zhu F F, Han C Q, et al. Topologically nontrivial bismuth(111) thin films [J]. Sci. Rep., 2016, 6: 21326
doi: 10.1038/srep21326
7 Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films [J]. Surf. Sci., 2007, 601: 3593
doi: 10.1016/j.susc.2007.06.075
8 Hatta S, Ohtsubo Y, Miyamoto S, et al. Epitaxial growth of Bi thin films on Ge(111) [J]. Appl. Surf. Sci., 2009, 256: 1252
doi: 10.1016/j.apsusc.2009.05.079
9 Ast C R, Höchst H. Electronic structure of a bismuth bilayer [J]. Phys. Rev., 2003, 67B: 113102
10 Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films [J]. Phys. Rev. Lett., 2006, 97: 146803
doi: 10.1103/PhysRevLett.97.146803
11 Takayama A, Sato T, Souma S, et al. Tunable spin polarization in bismuth ultrathin film on Si(111) [J]. Nano Lett., 2012, 12: 1776
doi: 10.1021/nl2035018 pmid: 22448971
12 Ast C R, Höchst H. Fermi surface of Bi(111) measured by photoemission spectroscopy [J]. Phys. Rev. Lett., 2001, 87: 177602
doi: 10.1103/PhysRevLett.87.177602
13 Xiao S H, Wei D H, Jin X F. Bi(111) thin film with insulating interior but metallic surfaces [J]. Phys. Rev. Lett., 2012, 109: 166805
doi: 10.1103/PhysRevLett.109.166805
14 Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films [J]. Phys. Rev., 1993, 48B: 11431
15 Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study [J]. Phys. Rev. Lett., 2011, 107: 136805
doi: 10.1103/PhysRevLett.107.136805
16 Wang D C, Chen L, Liu H M, et al. Electronic structures and topological properties of Bi(111) ultrathin films [J]. J. Phys. Soc. Jpn., 2013, 82: 094712
17 Falvo M R, Clary G J, Taylor II R M, et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature, 1997, 389: 582
doi: 10.1038/39282
18 Cai Y Q, Zhang A H, Feng Y P, et al. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes [J]. J. Chem. Phys., 2009, 131: 224701
doi: 10.1063/1.3267473
19 Hirahara T, Fukui N, Shirasawa T, et al. Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111) substrates: Eevidence for a strain-induced topological phase transition [J]. Phys. Rev. Lett., 2012, 109: 227401
doi: 10.1103/PhysRevLett.109.227401
20 Wang Z F, Yao M Y, Ming W M, et al. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions [J]. Nat. Commun., 2013, 4: 1384
doi: 10.1038/ncomms2387 pmid: 23340424
21 Miao L, Wang Z F, Ming W M, et al. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 2758
doi: 10.1073/pnas.1218104110
22 Chen L, Wang Z F, Liu F. Robustness of two-dimensional topological insulator states in bilayer bismuth against strain and electrical field [J]. Phys. Rev., 2013, 87B: 235420
23 Huang Z Q, Hsu C H, Chuang F C, et al. Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures [J]. New J. Phys., 2014, 16: 105018
doi: 10.1088/1367-2630/16/10/105018
24 Wang X X, Xu C Z, Hu H Z, et al. Topological phase stability and transformation of bismuthene [J]. EPL, 2017, 119: 27002
doi: 10.1209/0295-5075/119/27002
25 Peng X H, Copple A. Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study [J]. Phys. Rev., 2013, 87B: 115308
26 Copple A, Ralston N, Peng X H. Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain [J]. Appl. Phys. Lett., 2012, 100: 193108
doi: 10.1063/1.4718026
27 Peng X H, Velasquez S. Strain modulated band gap of edge passivated armchair graphene nanoribbons [J]. Appl. Phys. Lett., 2011, 98: 023112
28 Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene [J]. Phys. Rev., 2014, 90B: 085402
29 Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
30 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
31 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
32 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
33 Nagao T, Sadowski J T, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7 [J]. Phys. Rev. Lett., 2004, 93: 105501
doi: 10.1103/PhysRevLett.93.105501
34 Mönig H, Sun J, Koroteev Y M, et al. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations [J]. Phys. Rev., 2005, 72B: 085410
35 Sholl D S, Steckel J A. Density Functional Theory: A Practical Introduction [M]. New Jersey: John Wiley & Sons Inc, 2009: 96
36 Wang J F. Solid State Physics Course [M]. 6th Ed., Jinan: Shandong University Press, 2008: 171
36 王矜奉. 固体物理教程 [M]. 第六版, 济南: 山东大学出版社, 2008: 171
[1] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[2] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[3] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[4] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[6] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[7] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[8] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[9] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[10] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[11] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[12] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[13] 盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
[14] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.