|
|
一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用 |
盛鹰1,2, 贾彬1,2( ), 王汝恒1,2, 陈国平1,2 |
1 西南科技大学工程材料与结构冲击振动四川省重点实验室 绵阳 621010 2 西南科技大学土木工程与建筑学院 绵阳 621010 |
|
The Definition of Atomic Scale Strain and Its Application in Identifying the Evolution of Microdefects |
SHENG Ying1,2, JIA Bin1,2( ), WANG Ruheng1,2, CHEN Guoping1,2 |
1 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China 2 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China |
引用本文:
盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
Ying SHENG,
Bin JIA,
Ruheng WANG,
Guoping CHEN.
The Definition of Atomic Scale Strain and Its Application in Identifying the Evolution of Microdefects[J]. Acta Metall Sin, 2020, 56(8): 1144-1154.
[1] |
Subramaniyan A K, Sun C T. Continuum interpretation of virial stress in molecular simulations [J]. Int. J. Solids Struct., 2008, 45: 4340
doi: 10.1016/j.ijsolstr.2008.03.016
|
[2] |
Zimmerman J A, Webb E B, Hoyt J J, et al. Calculation of stress in atomistic simulation [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 319
|
[3] |
Cormier J, Rickman J M, Delph T J. Stress calculation in atomistic simulations of perfect and imperfect solids [J]. J. Appl. Phys., 2001, 89: 99
doi: 10.1063/1.1328406
|
[4] |
Zhou M. A new look at the atomic level virial stress: On continuum-molecular system equivalence [J]. Proc. R. Soc., 2003, 459A: 2347
|
[5] |
Liu B, Qiu X M. How to compute the atomic stress objectively? [J]. J. Comput. Theor. Nanosci., 2009, 6: 1081
doi: 10.1166/jctn.2009.1148
|
[6] |
Xu R, Liu B. Investigation on applicability of various stress definitions in atomistic simulation [J]. Acta Mech. Solida Sin., 2009, 22: 644
doi: 10.1016/S0894-9166(09)60394-3
|
[7] |
Wang Y C, Wu C Y, Chu J P, et al. Indentation behavior of Zr-based metallic-glass films via molecular-dynamics simulations [J]. Metall. Mater. Trans., 2010, 41A: 3010
|
[8] |
Hirth J P, Lothe J. Theory of dislocations (2nd Ed.,) [J]. J. Appl. Mech., 1983, 50: 476
|
[9] |
Seol J B, Kim J G, Na S H, et al. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels [J]. Acta Mater., 2017, 131: 187
doi: 10.1016/j.actamat.2017.03.076
|
[10] |
Zimmerman J A, Bammann D J, Gao H J. Deformation gradients for continuum mechanical analysis of atomistic simulations [J]. Int. J. Solids Struct., 2009, 46: 238
doi: 10.1016/j.ijsolstr.2008.08.036
|
[11] |
Mott P H, Argon A S, Suter U W. The atomic strain tensor [J]. J. Comput. Phys., 1992, 101: 140
doi: 10.1016/0021-9991(92)90048-4
|
[12] |
Falk M L. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids [J]. Phys. Rev., 1999, 60B: 7062
|
[13] |
Kim H, Meng Y F, Rouviére J L, et al. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice [J]. Micron, 2017, 92: 6
pmid: 27816744
|
[14] |
Gullett P M, Horstemeyer M F, Baskes M I, et al. A deformation gradient tensor and strain tensors for atomistic simulations [J]. Modell. Simul. Mater. Sci. Eng., 2008, 16: 015001
doi: 10.1088/0965-0393/16/1/015001
|
[15] |
Quyen T N T. Variational method for multiple parameter identification in elliptic PDEs [J]. J. Math. Anal. Appl., 2018, 461: 676
doi: 10.1016/j.jmaa.2018.01.030
|
[16] |
Sheng Y, Zeng X G, Chen H Y, et al. Identification of target parameters and experimental verification for dislocation-mechanics-based constitutive relations of titanium alloy [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2015, 47(6): 69
|
[16] |
(盛 鹰, 曾祥国, 陈华燕等. 基于位错机制钛合金本构关系的目标参数识别及实验验证 [J]. 四川大学学报(工程科学版), 2015, 47(6): 69)
|
[17] |
Kramer O. Genetic Algorithm Essentials [M]. Cham: Springer, 2017: 1
|
[18] |
Mei Y, Sun Q L, Yu L H, et al. Grain size prediction of aluminum alloy dies castings based on GA-ELM [J]. Acta Metall. Sin., 2017, 53: 1125
doi: 10.11900/0412.1961.2016.00573
|
[18] |
(梅 益, 孙全龙, 喻丽华等. 基于GA-ELM的铝合金压铸件晶粒尺寸预测 [J]. 金属学报, 2017, 53: 1125)
doi: 10.11900/0412.1961.2016.00573
|
[19] |
Bradford E, Schweidtmann A M, Lapkin A. Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm [J]. J. Global Optim., 2018, 71: 407
doi: 10.1007/s10898-018-0609-2
|
[20] |
Yu B S, Wang S L, Yang T, et al. BP neural netwok constitutive model based on optimization with genetic algorithm for SMA [J]. Acta Metall. Sin., 2017, 53: 248
doi: 10.11900/0412.1961.2016.00218
|
[20] |
(余滨杉, 王社良, 杨 涛等. 基于遗传算法优化的SMABP神经网络本构模型 [J]. 金属学报, 2017, 53: 248)
doi: 10.11900/0412.1961.2016.00218
|
[21] |
Qian W W, Chai J R. Clustering genetic algorithm based on complex method [J]. Comput. Eng. Appl., 2017, 53(3): 87
|
[21] |
(钱武文, 柴军瑞. 基于复合形法的聚类遗传算法 [J]. 计算机工程与应用, 2017, 53(3): 87)
|
[22] |
Sheng Y, Zeng X G, Chen G P, et al. Application of multilayer complex genetic algorithm in parameters identification of titanium alloy dynamic constitutive model [J]. J. Chengdu Univ. (Nat. Sci.), 2018, 37: 242
|
[22] |
(盛 鹰, 曾祥国, 陈国平等. 自适应多层复形遗传算法在钛合金动态本构模型参数识别中的应用 [J]. 成都大学学报(自然科学版), 2018, 37: 242)
|
[23] |
Luo J F, Mao S C, Han X D, et al. High-cycle fatigue mechanisms of a NiTi shape memory alloy under different mean strains [J]. Mater. Sci. Forum, 2009, 610-613: 1120
doi: 10.4028/www.scientific.net/MSF.610-613
|
[24] |
Wei Z Z, Ma X, Zhang X P. Topological modelling of the B2-B19' martensite transformation crystallography in NiTi alloy [J]. Acta Metall. Sin., 2018, 54: 1461
doi: 10.11900/0412.1961.2018.00078
|
[24] |
(韦昭召, 马 骁, 张新平. NiTi合金B2-B19'马氏体相变晶体学的拓扑模拟研究 [J]. 金属学报, 2018, 54: 1461)
doi: 10.11900/0412.1961.2018.00078
|
[25] |
Krishnan M, Singh J B. A novel B19' martensite in nickel titanium shape memory alloys [J]. Acta Mater., 2000, 48: 1325
doi: 10.1016/S1359-6454(99)00423-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|