Please wait a minute...
金属学报  2020, Vol. 56 Issue (8): 1144-1154    DOI: 10.11900/0412.1961.2019.00343
  本期目录 | 过刊浏览 |
一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用
盛鹰1,2, 贾彬1,2(), 王汝恒1,2, 陈国平1,2
1 西南科技大学工程材料与结构冲击振动四川省重点实验室 绵阳 621010
2 西南科技大学土木工程与建筑学院 绵阳 621010
The Definition of Atomic Scale Strain and Its Application in Identifying the Evolution of Microdefects
SHENG Ying1,2, JIA Bin1,2(), WANG Ruheng1,2, CHEN Guoping1,2
1 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Southwest University of Science and Technology, Mianyang 621010, China
2 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
引用本文:

盛鹰, 贾彬, 王汝恒, 陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
Ying SHENG, Bin JIA, Ruheng WANG, Guoping CHEN. The Definition of Atomic Scale Strain and Its Application in Identifying the Evolution of Microdefects[J]. Acta Metall Sin, 2020, 56(8): 1144-1154.

全文: PDF(2373 KB)   HTML
摘要: 

为探索性地定义原子尺度的应变,本工作提出了可同时适用于原子尺度和连续介质尺度的“变形”的计算方法,采用离散变形梯度表征原子尺度下的“变形”。在此基础上,引入邻域原子影响权函数,定义了原子尺度下的应变张量,建立了计算任一中心原子的综合局部变形梯度和应变张量的加权最小二乘法目标函数,从而将原子尺度应变的计算转化为解决目标函数的最小值优化问题。然后运用改进的自适应多层复形遗传算法即可实现原子尺度应变的计算。最后,以NiTi合金为研究对象,建立了NiTi合金变形与破坏的分子动力学演化模型并计算了各时刻的原子尺度应变云图,通过应变云图观察到了孪晶。经与NiTi合金三点弯曲冲击断裂试件裂纹尖端的微观观察实验作对照,验证了本工作建立的原子尺度应变定义方法的合理性及其在识别微观缺陷演化中的应用意义。

关键词 原子尺度应变离散变形梯度权函数目标函数优化微观缺陷演化    
Abstract

The strain tensors are commonly defined by the local deformation of continuum. Unlike displacement, strain is not a physical quantity that can be measured directly, and it is calculated from a definition that relies on the gradient of the continuous displacement field. At the microscale, it is difficult to define the local deformation according to the position of each atom which is obtained from the adjacent discrete time interval, so there is no universally accepted definition of strain tensors of atomic scale so far, and none of the molecular dynamics software can be used to calculate the atomic strain until now. In order to define the atomic scale strain, a method for calculating the "deformation" both in the atomic scale and the continuum scale is proposed. In the definition, the discrete deformation gradient is proposed to describe the "deformation" in the atomic scale and the influence weight function of neighborhood atom is introduced. Then the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and the optimal local deformation gradient of each atom. After that, the advanced multilayer complex genetic algorithm can be used to calculate the atomic strain. Finally, take NiTi alloy as an example, the molecular dynamics evolution model of deformation and failure of NiTi alloy was established. Then the atomic scale strain nephogram at each time was calculated, and the microdefects such as twins were observed by strain nephogram. Compared with the micro-observation experiment of crack tip of NiTi alloy for three-point bending, the rationality of the atomic scale strain definition method established in this study and its application significance in identifying the evolution of microdefects are verified.

Key wordsatomic scale strain    discrete deformation gradient    weight function    objective function optimization    evolution of microdefect
收稿日期: 2019-10-15     
ZTFLH:  O341  
基金资助:西南科技大学博士基金项目(17zx7149);工程材料与结构冲击振动四川省重点实验室开放基金项目(18kfgk12)
作者简介: 盛 鹰,男,1982年生,博士
图1  邻域内离散原子的运动示意图
图2  NiTi合金三点弯曲试样断口形貌的SEM像
图3  NiTi合金裂纹表面的TEM像
图4  NiTi合金应力-应变计算曲线
图5  对应图4中关键点1~6的原子构型图
图6  NiTi合金裂尖附近的分子动力学模拟结果
图7  与图6对应的原子尺度应变云图
图8  NiTi合金权函数ωn(r)的函数图
图9  不同截断半径Rcut时NiTi合金权函数ω(r)的函数图
[1] Subramaniyan A K, Sun C T. Continuum interpretation of virial stress in molecular simulations [J]. Int. J. Solids Struct., 2008, 45: 4340
doi: 10.1016/j.ijsolstr.2008.03.016
[2] Zimmerman J A, Webb E B, Hoyt J J, et al. Calculation of stress in atomistic simulation [J]. Modell. Simul. Mater. Sci. Eng., 2004, 12: 319
[3] Cormier J, Rickman J M, Delph T J. Stress calculation in atomistic simulations of perfect and imperfect solids [J]. J. Appl. Phys., 2001, 89: 99
doi: 10.1063/1.1328406
[4] Zhou M. A new look at the atomic level virial stress: On continuum-molecular system equivalence [J]. Proc. R. Soc., 2003, 459A: 2347
[5] Liu B, Qiu X M. How to compute the atomic stress objectively? [J]. J. Comput. Theor. Nanosci., 2009, 6: 1081
doi: 10.1166/jctn.2009.1148
[6] Xu R, Liu B. Investigation on applicability of various stress definitions in atomistic simulation [J]. Acta Mech. Solida Sin., 2009, 22: 644
doi: 10.1016/S0894-9166(09)60394-3
[7] Wang Y C, Wu C Y, Chu J P, et al. Indentation behavior of Zr-based metallic-glass films via molecular-dynamics simulations [J]. Metall. Mater. Trans., 2010, 41A: 3010
[8] Hirth J P, Lothe J. Theory of dislocations (2nd Ed.,) [J]. J. Appl. Mech., 1983, 50: 476
[9] Seol J B, Kim J G, Na S H, et al. Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels [J]. Acta Mater., 2017, 131: 187
doi: 10.1016/j.actamat.2017.03.076
[10] Zimmerman J A, Bammann D J, Gao H J. Deformation gradients for continuum mechanical analysis of atomistic simulations [J]. Int. J. Solids Struct., 2009, 46: 238
doi: 10.1016/j.ijsolstr.2008.08.036
[11] Mott P H, Argon A S, Suter U W. The atomic strain tensor [J]. J. Comput. Phys., 1992, 101: 140
doi: 10.1016/0021-9991(92)90048-4
[12] Falk M L. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids [J]. Phys. Rev., 1999, 60B: 7062
[13] Kim H, Meng Y F, Rouviére J L, et al. Peak separation method for sub-lattice strain analysis at atomic resolution: Application to InAs/GaSb superlattice [J]. Micron, 2017, 92: 6
pmid: 27816744
[14] Gullett P M, Horstemeyer M F, Baskes M I, et al. A deformation gradient tensor and strain tensors for atomistic simulations [J]. Modell. Simul. Mater. Sci. Eng., 2008, 16: 015001
doi: 10.1088/0965-0393/16/1/015001
[15] Quyen T N T. Variational method for multiple parameter identification in elliptic PDEs [J]. J. Math. Anal. Appl., 2018, 461: 676
doi: 10.1016/j.jmaa.2018.01.030
[16] Sheng Y, Zeng X G, Chen H Y, et al. Identification of target parameters and experimental verification for dislocation-mechanics-based constitutive relations of titanium alloy [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2015, 47(6): 69
[16] (盛 鹰, 曾祥国, 陈华燕等. 基于位错机制钛合金本构关系的目标参数识别及实验验证 [J]. 四川大学学报(工程科学版), 2015, 47(6): 69)
[17] Kramer O. Genetic Algorithm Essentials [M]. Cham: Springer, 2017: 1
[18] Mei Y, Sun Q L, Yu L H, et al. Grain size prediction of aluminum alloy dies castings based on GA-ELM [J]. Acta Metall. Sin., 2017, 53: 1125
doi: 10.11900/0412.1961.2016.00573
[18] (梅 益, 孙全龙, 喻丽华等. 基于GA-ELM的铝合金压铸件晶粒尺寸预测 [J]. 金属学报, 2017, 53: 1125)
doi: 10.11900/0412.1961.2016.00573
[19] Bradford E, Schweidtmann A M, Lapkin A. Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm [J]. J. Global Optim., 2018, 71: 407
doi: 10.1007/s10898-018-0609-2
[20] Yu B S, Wang S L, Yang T, et al. BP neural netwok constitutive model based on optimization with genetic algorithm for SMA [J]. Acta Metall. Sin., 2017, 53: 248
doi: 10.11900/0412.1961.2016.00218
[20] (余滨杉, 王社良, 杨 涛等. 基于遗传算法优化的SMABP神经网络本构模型 [J]. 金属学报, 2017, 53: 248)
doi: 10.11900/0412.1961.2016.00218
[21] Qian W W, Chai J R. Clustering genetic algorithm based on complex method [J]. Comput. Eng. Appl., 2017, 53(3): 87
[21] (钱武文, 柴军瑞. 基于复合形法的聚类遗传算法 [J]. 计算机工程与应用, 2017, 53(3): 87)
[22] Sheng Y, Zeng X G, Chen G P, et al. Application of multilayer complex genetic algorithm in parameters identification of titanium alloy dynamic constitutive model [J]. J. Chengdu Univ. (Nat. Sci.), 2018, 37: 242
[22] (盛 鹰, 曾祥国, 陈国平等. 自适应多层复形遗传算法在钛合金动态本构模型参数识别中的应用 [J]. 成都大学学报(自然科学版), 2018, 37: 242)
[23] Luo J F, Mao S C, Han X D, et al. High-cycle fatigue mechanisms of a NiTi shape memory alloy under different mean strains [J]. Mater. Sci. Forum, 2009, 610-613: 1120
doi: 10.4028/www.scientific.net/MSF.610-613
[24] Wei Z Z, Ma X, Zhang X P. Topological modelling of the B2-B19' martensite transformation crystallography in NiTi alloy [J]. Acta Metall. Sin., 2018, 54: 1461
doi: 10.11900/0412.1961.2018.00078
[24] (韦昭召, 马 骁, 张新平. NiTi合金B2-B19'马氏体相变晶体学的拓扑模拟研究 [J]. 金属学报, 2018, 54: 1461)
doi: 10.11900/0412.1961.2018.00078
[25] Krishnan M, Singh J B. A novel B19' martensite in nickel titanium shape memory alloys [J]. Acta Mater., 2000, 48: 1325
doi: 10.1016/S1359-6454(99)00423-1
[1] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[2] 吴恒安; 王秀喜; 倪向贵; 王宇 . 金属纳米杆弹性模量的直接原子计算[J]. 金属学报, 2002, 38(11): 1219-1222 .